
Copyright 2022 SchedMD LLC
https://schedmd.com

Slurm Container Support
CNCF Research Users Group

Nathan Rini
10/5/22

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Contents

● Slurm container support
● Slurm’s OCI runtime proxy - scrun
● Container staging with Lua plugin in scrun
● Rootless Docker support
● Podman support
● Container limitations in Slurm
● Questions

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Adding support for Docker in Slurm

Steps:
1. Slurm needs to be able to:

a. Run OCI Containers
b. Schedule jobs with containers
c. Track containers resources
d. Enforce all job rules and limits upon containers

2. Docker needs way to interface with Slurm:
a. Docker uses OCI Runtime to run containers
b. Slurm needs an OCI Runtime interface
c. Container images must be reliably sent to and from compute

nodes

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Slurm OCI Container Support

● Added ‘--container’ (21.08) support to the following:
○ srun
○ salloc
○ sbatch

● Added viewing job container [bundle path] (21.08) and
container-id (23.02) to the following:

○ scontrol show jobs
○ scontrol show steps
○ sacct

■ If passed as part of the ‘--format’ argument using
“Container”

○ slurmd, slurmstepd, slurmdbd & slurmctld logs (too many
places to list)

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

OCI Container Support (21.08+)

● Slurm cgroups features apply to the OCI containers
○ All processes should be cleaned up even if the container anchor process dies or processes

attempt to become daemons and detach from the session
○ Resource usage can be hard limited and monitored

● Slurm is only going to support unprivileged containers in 21.08, 22.05, 23.02
○ Use existing kernel support for containers
○ Users can already call all of these commands directly
○ Containers must be able to function in an existing host network

● Per host configuration via ‘oci.conf’ in /etc/slurm/
■ Environment variables SLURM_CONTAINER and

SLURM_CONTAINER_ID (23.02)will always be set
with a value (if present).

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

OCI Container Support (21.08+)

$ srun --container=/tmp/centos grep ^NAME /etc/os-release
NAME="CentOS Linux"

Note: containers have limited permissions
and can result in pseudo terminal warnings.

srun example

$ salloc --container=/tmp/centos grep ^NAME /etc/os-release
salloc: Granted job allocation 65
NAME="CentOS Linux"
salloc: Relinquishing job allocation 65

salloc example

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

OCI Container Support (21.08+)

sbatch example

$ sbatch --container=/tmp/centos --wrap 'grep ^NAME
/etc/os-release'
Submitted batch job 24419
$ cat slurm-24419.out
NAME="CentOS Linux"

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

MUNGE Perimeter

Compute Node
 Login Node

Batch Job Use Case (23.02)

slurmctld

slurmd

slurmstepd

srun

sshdsbatch/salloc
user

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

MUNGE Perimeter

Compute Node
 Login Node

Container Use Case (23.02)

slurmctld

slurmd

slurmstepd

scrun

sshd

srun

Docker / Podman / …
user

Container/Artifact
registry

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

OCI runtime proxy - scrun (23.02)

● scrun’s goal is to make containers boring for users
○ Users have better things to do than learn about the intricacies of containers
○ Site administrators will have to do setup and maintenance on the configuration

● Use Slurm’s existing infrastructure to run containers on compute nodes
● Automatic staging out and in of containers controlled by system administrators

○ End requirement that users manually prepare their images on compute nodes.
● Interface directly with OCI runtime clients (Docker or Podman or …)

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

OCI runtime proxy - scrun (23.02)

● Allow users to work with the tools they want while running work on the Slurm cluster
● scrun is a new CLI command to join srun, sbatch and salloc, but no user should ever

have to call it directly or even really need to be aware of it
● scrun is still very new and we welcome tickets with requests for enhancements and

especially bug reports

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun via rootless Docker (23.02)

example:

$ export
DOCKER_HOST=unix://$XDG_RUNTIME_DIR/docker.sock
$ export DOCKER_SECURITY=”--security-opt label:disable
--security-opt seccomp=unconfined --security-opt
apparmor=unconfined --net=none”
$ docker run $DOCKER_SECURITY -i ubuntu /bin/sh -c 'grep
^NAME /etc/os-release'
NAME="Ubuntu"
$ docker run $DOCKER_SECURITY -i centos /bin/sh -c 'grep
^NAME /etc/os-release'
NAME="CentOS Linux"

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Compute Node

Rootless Docker Process Trees

scrun

user

srun

Docker

Container/Artifact registrycontainerd

containerd-shim-runc-v2

rootlesskitslurmd

slurmstepd

crun

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Rootless Docker config (23.02)

~/.config/docker/daemon.json

{
 "default-runtime": "slurm",
 "runtimes": {
 "slurm": {
 "path":
"/usr/local/slurm/sbin/scrun"
 }
 },

 "experimental": true,
 "iptables": false,
 "bridge": "none",
 "no-new-privileges": true,
 "rootless": true,
 "selinux-enabled": false
}

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun via rootless Podman (23.02)

example:

$ podman run ubuntu /bin/sh -c 'grep ^NAME /etc/os-release'
NAME="Ubuntu"
$ podman run centos /bin/sh -c 'grep ^NAME /etc/os-release'
NAME="CentOS Linux"
$ podman run centos /bin/sh -c 'printenv SLURM_JOB_ID'
77
$ podman run centos /bin/sh -c 'printenv SLURM_JOB_ID'
78

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Compute Node

Podman Process Trees

scrun

user

srun

podman

Container/Artifact registryconmon

slurmd

slurmstepd

crun

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Podman config for scrun (23.02)

~/.config/containers/containers.conf:

[containers]
apparmor_profile = "unconfined"
cgroupns = "host"
cgroups = "enabled"
default_sysctls = []
label = false
netns = "host"
no_hosts = true
pidns = "host"
utsns = "host"
userns = "host"

[engine]
runtime = "slurm"
runtime_supports_nocgroup
s = ["slurm"]
runtime_supports_json = [
"slurm"]
remote = false

[engine.runtimes]
slurm = [
"/usr/local/slurm/sbin/scrun"
]

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - container staging

● scrun needs to stage out the image to remote host at startup
● scrun needs to stage in the image from remote host at job end
● Flexibility required as every site has a different shared file system configuration and

data ingress and egress rules.
○ scrun avoids making as many assumptions about the request host vs the

execution host in Slurm itself as possible.
○ Site admins must configure where and how images are staged.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - container staging via Lua

● scrun’s Lua staging plugin allows site to write custom and simple scripts to move the
image to and back from the remote storage.

● scrun’s staging lua script is located at:
○ /etc/slurm/staging.lua

● Lua script runs as user avoiding any additional privilege escalation risk
● Lua already has JSON support via libraries
● Sites can write a native Slurm plugin if desired instead of using the Lua plugin.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - Lua container stage in example

Simplified stage in (to compute node) hook:

function slurm_stage_in_allocator(id, bundle, spool_path,
config_path)

os.execute(string.format("/usr/bin/env rsync --numeric-ids
--delete-after --ignore-errors -a -- %s/ %s/", rootfs, dstfs))

slurm.set_bundle_path(p)
slurm.set_root_path(p.."rootfs")

write_file(jc, json.encode(c))
return slurm.SUCCESS

end

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - Lua container stage out example

Simplified stage out (from compute node) hook: (this example only deletes the
container)function slurm_stage_out_allocator(id, bundle, spool_path, config_path)

os.execute("rm --one-file-system --preserve-root=all -rf "..bundle)
return slurm.SUCCESS

end

See Slurm’s documentation for a full and functional example of
the Lua script when slurm-23.02 is officially released.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● No network namespaces support
○ All containers must run under host network

● No cgroup/apparmor/selinux support via Docker/Podman
○ All the containers are executed remotely making the local system’s

security systems irrelevant to the container. Podman allows easy
configuration disablement while Docker requires command line arguments

● No container annotation support implemented yet
● No automatic resource selections implemented yet

○ Use of Slurm environment variables allow job property control
○ scrun will currently run the default job with default resources requested

● Container failures may require examining slurmd logs and/or syslogs to
determine root cause

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● Lua must either be compiled with JSON support or the library must be
installed.

○ Slurm may need to be compiled after the JSON library is installed in
Lua in order to be able to use it.

● scrun will not currently kill or stop the lua script while it is running.
○ If the Lua staging scripts hang, then the job time limit may be

triggered and kill the job.
● scrun has the relevant SPANK and clifilter support.

○ These hooks are not a security device and any user may override
them same as srun/sbatch/salloc.

○ scrun uses standard Slurm RPCs and user permissions. Any user may
modify or ptrace their own processes. Any security must be applied at
the controller.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● One podman/docker instance per user per host
○ scrun does not provide information for jobs other than its own

■ Jobs will be visible via squeue/sacct/slurmrestd
○ docker / podman will be blind to any externally started containers

● MUNGE Authentication
○ scrun currently only works via MUNGE
○ Job submission host must have Slurm installed and be in MUNGE perimeter

● JWT Authentication
○ Not currently implemented

● Container IDs must be unique per user
○ Docker or Podman will hand the container ID to scrun verbatim.
○ scrun will try to search for the container by ID

If the local anchor process is dead.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● All existing limitations for running containers in Slurm still apply:
○ Containers must have a compatible version of Slurm installed to call

Slurm commands
○ MUNGE’s socket must be mounted in container to use MUNGE

based authentication
○ JWT authentication is possible from container but there are no

secrets functionality currently available.
■ Slurm does not support step controls/commands via JWT

currently.
● User environment must be explicitly set

○ The environment at time of calling docker/podman will not be
inherited by the container unless environment variables are
supported by Docker/Podman.

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● scrun will create a local process that must remain alive for the
duration of the Job

○ If the local process is killed, then the job will be killed by Slurm. This
is the same requirement as any job run via srun

○ scrun can be started from a batch job to avoid submission host
uptime requirements

● scrun supports output of Docker JSON formatted log files
○ All output to set to STDOUT instead of being split between STDOUT

and STDERR
● Docker current uses an event and poll based system for determining

if a container is alive
○ This may result in higher CPU usage on the submission host than

only running a container directly via srun

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● scrun requires oci.conf to be fully configured
● I/O restrictions and other limitations from the submission host will affect

staging containers in and out
● Slurm (scrun) is run as one of the last steps of starting the container in

Docker/Podman
● Slurm has no control over Docker/Podman

○ Docker and podman will need to configured independently of Slurm
○ Only rootless Docker/Podman is supported

■ rootless docker has varying levels of support with older kernels
■ Sites are recommended to run the latest version of their distro

and docker to avoid issues
● Not all functionality of Docker/Podman is implemented

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● Online image repositories exist independently of Slurm and may apply
bandwidth or usage restrictions

○ These limitations can falsely imply scrun (and Slurm) being slow
○ Sites are suggested to set up local caching proxies if possible
○ scrun does not cache images

● scrun is not a security solution or antivirus or a new security layer
○ It does not scan or reason about the contents of the container images

beyond enforcing basic OCI image formatting
○ It will push the images to the execution hosts where the configured

and the OCI runtime in oci.conf will be executed to start the
containers

○ Users are responsible to ensure the container images are following
site policies and procedures while being free of malicious code

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

scrun - limitations (23.02)

● scrun will only run under the POSIX user/group neither adding or removing
abilities/capabilities/permissions from the user and therefore the container processes

● Sites must configure the stage in and stage out Lua scripts to clean up cached images
○ Failure to cleanup the images may result in massive wasteful usage of the filesystems.

● Sites must configure docker/podman to cleanup cached images independently of Slurm
○ Dockers build cache can get very large!

https://schedmd.com

Copyright 2022 SchedMD LLC
https://schedmd.com

Questions?

https://schedmd.com

