Slurm and/or/vs Kubernetes

Tim Wickberg
CTO

s | SCHEDMI

Background

e This talk is meant to discuss the interplay between traditional HPC workload managers -
Slurm - and cloud native orchestrators - Kubernetes
e ‘"and/or/vs"... why not just pick a single conjunction?
o Well.. it's not that simple
o Depending on your site, users, and systems, either Slurm or Kubernetes, or Slurm and
Kubernetes combined, may be appropriate stacks

SCHEDMI

Warning!

e Thisis meant as a high-level, somewhat simplified, view of two complex products
o Slurm and Kubernetes are both open-source
m There are patches, plugins, and configurations that look radically different than
what I've described
m Both systems continue to evolve well beyond their original designs

SCHEDMI

Perspectives - Kubernetes

e Kubernetes was built to manage long-running processes
o Designed to orchestrate multiple microservices
m Usually in support of one or more web services
o Core architecture permits scaling cluster size according to external demand
m And managing availability and redundancy for the constituent services
e Cloud-native systems assume "infinite" resources are available
o And the workload is finite
m Albeit, with fluctuations in instantaneous demand
e Prioritization not a central aspect of cloud orchestration
o Allworkload is expected to run concurrently by default

SCHEDMI

Perspectives - Kubernetes

e Kubernetes approaches scheduling at a different level - node centric
o Scheduling API granularity is fixed at the node level
m Extensions such as NVIDIA's DRA allows for GPU management
o No model for CPU core affinity
m Can't - centrally - ensure a pod won't share a core with other workloads
o Scheduling semantics reflecting cloud workload demands, rather than HPC
m E.g, Affinity and Anti-Affinity scheduling policies
e Anti-Affinity is used to ensure pod instances don't share a node
o Critical for architecting redundant systems
o But doesn't translate into traditional HPC batch scheduling
e Services are containerized by default
e System use is generally programmatic, through tools like Terraform

SCHEDMI

Perspectives - HPC Batch Scheduling

HPC systems assume system size is fixed
o And the workload is infinite
o Queue prioritization is thus critical
"Slurm is a policy engine" - quote stolen from a colleague
e Slurm manages a number of intertwined HPC system management tasks
o Job queuing and prioritization - scheduling
o Job accounting
o Control user access to compute resources (cgroups, pam_slurm_adopt)
Enable large-scale concurrent job launch (MPI, PMIx, nss_slurm, sbcast)
e Jobs assume access to a usable, fully-featured, default Linux environment
o Containerization - including Slurm's built-in container support - is optional
e Jobs are usually ad-hoc scripts, submitted through the command line
o Newer features such as Slurm's RESTful API can support more programmatic
interaction, but are not yet as widely adopted

O

SCHEDMI

Current Kubernetes Batch Support

e Kubernetes has limited support for batch workflows

o Modeled as either individual "pods", or as "“jobs"

o Most workflows use "pods" due to issues around the "jobs" model
e Prioritization models are limited

o FIFO is most common

SCHEDMI

Current Kubernetes Batch Support

e MPI-style workload support is weak
o Concurrent pod scheduling is not guaranteed by default Kubernetes components
m Default behavior for HPC batch schedulers
e "MPI Operator" is the most commonly used component to ensure pods launch roughly
simultaneously
o But does not scale - struggles to launch above more than 80 ranks
m Citation - https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011

SCHEDMI

https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011

Convergence of HPC and Cloud-Native

e So.. why am | talking about this?
e There's an opportunity to bridge the gap between HPC and Cloud-Native workloads
o Find a way to bring familiar commands, tooling, prioritization models into newer
architectures
o Clusters will continue to evolve - users are interested in access to new tools and
technologies
o Both ecosystems stand to benefit from each other
m Kubernetes from increased throughput, different approaches to job scheduling
and prioritization
m Slurm from newer cloud native technologies and tools, and increased focus on
flexibility in support of new user workflows

rHH SCHEDND

Converged Environments

Models of Converged Environments

e Four high-level models for a converged Slurm + Kubernetes environment:

o Over

o Distant

o Adjacent
o Under

e These are from Slurm's perspective... flip the Over/Under terms for Kubernetes' viewpoint

SCHEDMI

Over

SCHEDMI

Sl urmet lol

COMPu‘te :‘ob

Kubemetes Control Plome_
Kubelet

Over

e Slurm manages all cluster resources

e Kubernetes clusters are created ephemerally within Slurm batch jobs
Kubernetes control plane unavailable until job launches...
o Or needs to be hosted outside of the traditional cluster
e Not especially useful beyond test / development environments IMNSHO

SCHEDMI

Distant

SCHEDMI

K¥s Control Plane

slurmetld

Compute nodes

ku(ae,l et

Compute nodes

Slumd

Distant

e Run both Slurm and Kubernetes within the cluster environment
e Potential to enlist an additional management tool to shift nodes between the two sides
Neither Slurm nor Kubernetes are aware of the current resources and demand for the

other environment
o Management tool needs to handle assignment of resources between environments

e Approach taken today by tools such as Dell's Omnia toolkit

SCHEDMI

Adjacent

SCHEDMI

K¥s Control Plane

N

V

slurmetld

Compute nodes

Kubelet + slurmdl

Adjacent

e Overlap both control planes
e Install Slurm Kubernetes scheduler plugin

o Have Slurm prioritize and schedule both Slurm and Kubernetes workloads
e Kubernetes jobs managed by the kubelet

o Full access to Kubernetes capabilities - sidecars, operators
e Slurm jobs run through Slurm

o Manage high-throughput workloads and large-scale MPI workloads

o Provides traditional CLI interfaces that HPC users expect

m Alongside RESTful API

SCHEDMI

Adjacent

e Current known limitations
o Kubernetes scheduling is still at node-level granularity
m DRA driver provides some support for GPU management
m No further granularity available currently
e But changes are difficult to push upstream
o Some Kubernetes scheduling primitives - e.g., affinity/anti-affinity - are difficult to
model in Slurm's internals

rHH SCHEDND

Under

SCHEDMI

Kubemetes Control Plane

Nodes

Kubelet

slurmetlod

Slumo(

slumd

Under

e Run Slurm cluster(s) within a Kubernetes environment
e Kubernetes-native cloud providers are already emerging
o And all mainstream cloud environments have a managed Kubernetes offering
e Long-lived "login" nodes (Kubernetes pods) provide for traditional user experience
o While allowing for increased user-to-user isolation
e Auto-scaling - best implemented through a Kubernetes Operator - can be used to shift
resources to/from Slurm's control
o The dynamic nodes feature in Slurm 22.05+ makes this simple
o Auto-scaling here can also be a bit more nuanced than the existing Slurm
power-saving-based cloud bursting model

rHH SCHEDND

Under

e Pros
O
O

e Cons
O

(@)

SCHEDMI

Traditional experience for Slurm users
Allows for higher throughput, and full MPI support for those workloads

Kubernetes workloads run outside of Slurm's view
Prioritization between Slurm and Kubernetes workloads difficult
m Alllimitations of Kubernetes scheduling apply

Current Directions

SUNK

SchedMD is working with CoreWeave on "SUNK" - “[S]I[u]lrm o[n] [K]ubernetes"
o CoreWeave is a specialized GPU cloud provider, and uses Kubernetes to manage
their bare metal
m Use Slurm on Kubernetes for customer workloads, including large-scale Al
training work
e Including their recent record-setting MLPerf run on 3,584 H100 GPUs

SCHEDMI

SUNK

e Kubernetes used to manage and deploy the Slurm cluster on bare metal
e Kubernetes Operator deployed to monitor Slurm cluster state through the REST API
o Scale nodes (pods) up-and-down automatically by adding/removing dynamic nodes
from the cluster
e Kubernetes scheduling plugin also allows for Kubernetes workloads to be tracked and
managed through that same Slurm cluster
e Combination of the "Under" and "Adjacent" models

SCHEDMI

SUNK

... where is it?
o CoreWeave is working on open-sourcing SUNK, planned for early 2024
m SchedMD is working with them to extend it to additional K8s environments

SCHEDMI

Questions?

SCHE

The Slur

