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Background

e This talk is meant to discuss the interplay between traditional HPC workload managers -
Slurm - and cloud native orchestrators - Kubernetes
e ‘"and/or/vs"... why not just pick a single conjunction?
o  Well.. it's not that simple
o Depending on your site, users, and systems, either Slurm or Kubernetes, or Slurm and
Kubernetes combined, may be appropriate stacks

SCHEDMI



Warning!

e Thisis meant as a high-level, somewhat simplified, view of two complex products
o  Slurm and Kubernetes are both open-source
m There are patches, plugins, and configurations that look radically different than
what I've described
m Both systems continue to evolve well beyond their original designs
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Perspectives - Kubernetes

e Kubernetes was built to manage long-running processes
o Designed to orchestrate multiple microservices
m  Usually in support of one or more web services
o  Core architecture permits scaling cluster size according to external demand
m  And managing availability and redundancy for the constituent services
e Cloud-native systems assume "infinite" resources are available
o And the workload is finite
m  Albeit, with fluctuations in instantaneous demand
e Prioritization not a central aspect of cloud orchestration
o Allworkload is expected to run concurrently by default
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Perspectives - Kubernetes

e Kubernetes approaches scheduling at a different level - node centric
o Scheduling API granularity is fixed at the node level
m Extensions such as NVIDIA's DRA allows for GPU management
o No model for CPU core affinity
m Can't - centrally - ensure a pod won't share a core with other workloads
o  Scheduling semantics reflecting cloud workload demands, rather than HPC
m E.g, Affinity and Anti-Affinity scheduling policies
e Anti-Affinity is used to ensure pod instances don't share a node
o  Critical for architecting redundant systems
o But doesn't translate into traditional HPC batch scheduling
e Services are containerized by default
e System use is generally programmatic, through tools like Terraform
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Perspectives - HPC Batch Scheduling

HPC systems assume system size is fixed
o And the workload is infinite
o  Queue prioritization is thus critical
"Slurm is a policy engine" - quote stolen from a colleague
e Slurm manages a number of intertwined HPC system management tasks
o Job queuing and prioritization - scheduling
o Job accounting
o  Control user access to compute resources (cgroups, pam_slurm_adopt)
Enable large-scale concurrent job launch (MPI, PMIx, nss_slurm, sbcast)
e Jobs assume access to a usable, fully-featured, default Linux environment
o Containerization - including Slurm's built-in container support - is optional
e Jobs are usually ad-hoc scripts, submitted through the command line
o Newer features such as Slurm's RESTful API can support more programmatic
interaction, but are not yet as widely adopted

O
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Current Kubernetes Batch Support

e Kubernetes has limited support for batch workflows

o Modeled as either individual "pods", or as "“jobs"

o  Most workflows use "pods" due to issues around the "jobs" model
e Prioritization models are limited

o FIFO is most common
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Current Kubernetes Batch Support

e MPI-style workload support is weak
o Concurrent pod scheduling is not guaranteed by default Kubernetes components
m Default behavior for HPC batch schedulers
e "MPI Operator" is the most commonly used component to ensure pods launch roughly
simultaneously
o But does not scale - struggles to launch above more than 80 ranks
m Citation - https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011
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Convergence of HPC and Cloud-Native

e So.. why am | talking about this?
e There's an opportunity to bridge the gap between HPC and Cloud-Native workloads
o Find a way to bring familiar commands, tooling, prioritization models into newer
architectures
o Clusters will continue to evolve - users are interested in access to new tools and
technologies
o Both ecosystems stand to benefit from each other
m  Kubernetes from increased throughput, different approaches to job scheduling
and prioritization
m  Slurm from newer cloud native technologies and tools, and increased focus on
flexibility in support of new user workflows
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Converged Environments



Models of Converged Environments

e Four high-level models for a converged Slurm + Kubernetes environment:

o Over

o Distant

o Adjacent
o Under

e These are from Slurm's perspective... flip the Over/Under terms for Kubernetes' viewpoint
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Over

e Slurm manages all cluster resources

e Kubernetes clusters are created ephemerally within Slurm batch jobs
Kubernetes control plane unavailable until job launches...
o Or needs to be hosted outside of the traditional cluster
e Not especially useful beyond test / development environments IMNSHO
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Distant
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Distant

e Run both Slurm and Kubernetes within the cluster environment
e Potential to enlist an additional management tool to shift nodes between the two sides
Neither Slurm nor Kubernetes are aware of the current resources and demand for the

other environment
o Management tool needs to handle assignment of resources between environments

e Approach taken today by tools such as Dell's Omnia toolkit
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Adjacent
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Adjacent

e Overlap both control planes
e Install Slurm Kubernetes scheduler plugin

o Have Slurm prioritize and schedule both Slurm and Kubernetes workloads
e Kubernetes jobs managed by the kubelet

o Full access to Kubernetes capabilities - sidecars, operators
e Slurm jobs run through Slurm

o  Manage high-throughput workloads and large-scale MPI workloads

o Provides traditional CLI interfaces that HPC users expect

m  Alongside RESTful API
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Adjacent

e Current known limitations
o Kubernetes scheduling is still at node-level granularity
m DRA driver provides some support for GPU management
m No further granularity available currently
e But changes are difficult to push upstream
o Some Kubernetes scheduling primitives - e.g., affinity/anti-affinity - are difficult to
model in Slurm's internals
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Under

e Run Slurm cluster(s) within a Kubernetes environment
e Kubernetes-native cloud providers are already emerging
o And all mainstream cloud environments have a managed Kubernetes offering
e Long-lived "login" nodes (Kubernetes pods) provide for traditional user experience
o  While allowing for increased user-to-user isolation
e Auto-scaling - best implemented through a Kubernetes Operator - can be used to shift
resources to/from Slurm's control
o  The dynamic nodes feature in Slurm 22.05+ makes this simple
o Auto-scaling here can also be a bit more nuanced than the existing Slurm
power-saving-based cloud bursting model
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Under

e Pros
O
O

e Cons
O

(@)
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Traditional experience for Slurm users
Allows for higher throughput, and full MPI support for those workloads

Kubernetes workloads run outside of Slurm's view
Prioritization between Slurm and Kubernetes workloads difficult
m Alllimitations of Kubernetes scheduling apply



Current Directions



SUNK

SchedMD is working with CoreWeave on "SUNK" - “[S]I[u]lrm o[n] [K]ubernetes"
o CoreWeave is a specialized GPU cloud provider, and uses Kubernetes to manage
their bare metal
m  Use Slurm on Kubernetes for customer workloads, including large-scale Al
training work
e Including their recent record-setting MLPerf run on 3,584 H100 GPUs
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SUNK

e Kubernetes used to manage and deploy the Slurm cluster on bare metal
e Kubernetes Operator deployed to monitor Slurm cluster state through the REST API
o  Scale nodes (pods) up-and-down automatically by adding/removing dynamic nodes
from the cluster
e Kubernetes scheduling plugin also allows for Kubernetes workloads to be tracked and
managed through that same Slurm cluster
e Combination of the "Under" and "Adjacent" models
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SUNK

... where is it?
o CoreWeave is working on open-sourcing SUNK, planned for early 2024
m  SchedMD is working with them to extend it to additional K8s environments
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Questions?



SCHE

The Slur



