
Slurm and/or/vs Kubernetes

Tim Wickberg
CTO



Background

● This talk is meant to discuss the interplay between traditional HPC workload managers - 
Slurm - and cloud native orchestrators - Kubernetes

● "and/or/vs"... why not just pick a single conjunction?
○ Well… it's not that simple
○ Depending on your site, users, and systems, either Slurm or Kubernetes, or Slurm and 

Kubernetes combined, may be appropriate stacks



Warning!

● This is meant as a high-level, somewhat simplified, view of two complex products
○ Slurm and Kubernetes are both open-source

■ There are patches, plugins, and configurations that look radically different than 
what I've described

■ Both systems continue to evolve well beyond their original designs



Perspectives - Kubernetes

● Kubernetes was built to manage long-running processes
○ Designed to orchestrate multiple microservices

■ Usually in support of one or more web services
○ Core architecture permits scaling cluster size according to external demand

■ And managing availability and redundancy for the constituent services
● Cloud-native systems assume "infinite" resources are available

○ And the workload is finite
■ Albeit, with fluctuations in instantaneous demand

● Prioritization not a central aspect of cloud orchestration
○ All workload is expected to run concurrently by default



Perspectives - Kubernetes

● Kubernetes approaches scheduling at a different level - node centric
○ Scheduling API granularity is fixed at the node level

■ Extensions such as NVIDIA's DRA allows for GPU management
○ No model for CPU core affinity

■ Can't - centrally - ensure a pod won't share a core with other workloads
○ Scheduling semantics reflecting cloud workload demands, rather than HPC

■ E.g, Affinity and Anti-Affinity scheduling policies
● Anti-Affinity is used to ensure pod instances don't share a node

○ Critical for architecting redundant systems
○ But doesn't translate into traditional HPC batch scheduling

● Services are containerized by default
● System use is generally programmatic, through tools like Terraform



Perspectives - HPC Batch Scheduling

● HPC systems assume system size is fixed
○ And the workload is infinite
○ Queue prioritization is thus critical

● "Slurm is a policy engine" - quote stolen from a colleague
● Slurm manages a number of intertwined HPC system management tasks

○ Job queuing and prioritization - scheduling
○ Job accounting
○ Control user access to compute resources (cgroups, pam_slurm_adopt)
○ Enable large-scale concurrent job launch (MPI, PMIx, nss_slurm, sbcast)

● Jobs assume access to a usable, fully-featured, default Linux environment
○ Containerization - including Slurm's built-in container support - is optional

● Jobs are usually ad-hoc scripts, submitted through the command line
○ Newer features such as Slurm's RESTful API can support more programmatic 

interaction, but are not yet as widely adopted



Current Kubernetes Batch Support

● Kubernetes has limited support for batch workflows
○ Modeled as either individual "pods", or as "jobs"
○ Most workflows use "pods" due to issues around the "jobs" model

● Prioritization models are limited
○ FIFO is most common



Current Kubernetes Batch Support

● MPI-style workload support is weak
○ Concurrent pod scheduling is not guaranteed by default Kubernetes components

■ Default behavior for HPC batch schedulers
● "MPI Operator" is the most commonly used component to ensure pods launch roughly 

simultaneously
○ But does not scale - struggles to launch above more than 80 ranks

■ Citation - https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011

https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011


Convergence of HPC and Cloud-Native

● So… why am I talking about this?
● There's an opportunity to bridge the gap between HPC and Cloud-Native workloads

○ Find a way to bring familiar commands, tooling, prioritization models into newer 
architectures

○ Clusters will continue to evolve - users are interested in access to new tools and 
technologies

○ Both ecosystems stand to benefit from each other
■ Kubernetes from increased throughput, different approaches to job scheduling 

and prioritization
■ Slurm from newer cloud native technologies and tools, and increased focus on 

flexibility in support of new user workflows



Converged Environments



Models of Converged Environments

● Four high-level models for a converged Slurm + Kubernetes environment:
○ Over
○ Distant
○ Adjacent
○ Under

● These are from Slurm's perspective… flip the Over/Under terms for Kubernetes' viewpoint



Over



Over

● Slurm manages all cluster resources
● Kubernetes clusters are created ephemerally within Slurm batch jobs
● Kubernetes control plane unavailable until job launches…

○ Or needs to be hosted outside of the traditional cluster
● Not especially useful beyond test / development environments IMNSHO



Distant



Distant

● Run both Slurm and Kubernetes within the cluster environment
● Potential to enlist an additional management tool to shift nodes between the two sides
● Neither Slurm nor Kubernetes are aware of the current resources and demand for the 

other environment
○ Management tool needs to handle assignment of resources between environments

● Approach taken today by tools such as Dell's Omnia toolkit



Adjacent



Adjacent

● Overlap both control planes
● Install Slurm Kubernetes scheduler plugin

○ Have Slurm prioritize and schedule both Slurm and Kubernetes workloads
● Kubernetes jobs managed by the kubelet

○ Full access to Kubernetes capabilities - sidecars, operators
● Slurm jobs run through Slurm

○ Manage high-throughput workloads and large-scale MPI workloads
○ Provides traditional CLI interfaces that HPC users expect

■ Alongside RESTful API



Adjacent

● Current known limitations
○ Kubernetes scheduling is still at node-level granularity

■ DRA driver provides some support for GPU management
■ No further granularity available currently

● But changes are difficult to push upstream
○ Some Kubernetes scheduling primitives - e.g., affinity/anti-affinity - are difficult to 

model in Slurm's internals



Under



Under

● Run Slurm cluster(s) within a Kubernetes environment
● Kubernetes-native cloud providers are already emerging

○ And all mainstream cloud environments have a managed Kubernetes offering 
● Long-lived "login" nodes (Kubernetes pods) provide for traditional user experience

○ While allowing for increased user-to-user isolation
● Auto-scaling - best implemented through a Kubernetes Operator - can be used to shift 

resources to/from Slurm's control
○ The dynamic nodes feature in Slurm 22.05+ makes this simple
○ Auto-scaling here can also be a bit more nuanced than the existing Slurm 

power-saving-based cloud bursting model



Under

● Pros
○ Traditional experience for Slurm users
○ Allows for higher throughput, and full MPI support for those workloads

● Cons
○ Kubernetes workloads run outside of Slurm's view
○ Prioritization between Slurm and Kubernetes workloads difficult

■ All limitations of Kubernetes scheduling apply



Current Directions



SUNK

● SchedMD is working with CoreWeave on "SUNK" - "[S]l[u]rm o[n] [K]ubernetes"
○ CoreWeave is a specialized GPU cloud provider, and uses Kubernetes to manage 

their bare metal
■ Use Slurm on Kubernetes for customer workloads, including large-scale AI 

training work
● Including their recent record-setting MLPerf run on 3,584 H100 GPUs



SUNK

● Kubernetes used to manage and deploy the Slurm cluster on bare metal
● Kubernetes Operator deployed to monitor Slurm cluster state through the REST API

○ Scale nodes (pods) up-and-down automatically by adding/removing dynamic nodes 
from the cluster

● Kubernetes scheduling plugin also allows for Kubernetes workloads to be tracked and 
managed through that same Slurm cluster

● Combination of the "Under" and "Adjacent" models



SUNK

● … where is it?
○ CoreWeave is working on open-sourcing SUNK, planned for early 2024

■ SchedMD is working with them to extend it to additional K8s environments



Questions?




