National Aeronautics and Space Administration

10-years of Computing and Atmospheric Research at NASA 1 day per day

Bill Putman

Model development lead Global Modeling and Assimilation Office

www.nasa.gov

Outline

- 1. Scheduling...
- 2. A brief history of weather/climate modeling
 - 1. 1 day per day
- 3. Evolution of modeling systems at Goddard
 - 1. Computing
 - 2. Earth System Science
 - 3. Resolution

4. Looking toward the future

- 1. Expanding capability
- 2. Research systems
- 3. Challenging the current hardware/system

5. The pursuit of exascale

- 1. Future development
- 2. Heterogeneous multi-core systems

Hurricane Sandy October 29, 2012 Surface Winds from 7-km GEOS-5 Forecast

Fundamentals of Weather/Climate Models

Incoming Solar

Land surface

Outgoing Heat Energy Energy Transition from Solid to Vapor **Cirrus** Clouds Evaporative Stratus Clouds and Heat Energy Atmosphere Exchanges Cumulus **Precipitation &** Clouds Snow Cover Layer Evaporation Atmospheric Model Precipitation & Evaporation Runoff Sea Stratus Soil lce Clouds loisture Heat & Salinity Land Surface Ocean Exchange Currents, Processes Temperature, and Salinity (Snow Cover, Vegetation, Reflectivity Topography, and Land Use) Winds Realistic Geography Coupled Ocean Models Ocean Bottom Topography Ocean Model

Dynamics: Grid decomposition Momentum and heat fluxes Moisture transport

1922, Lewis Fry Richardson Richardson's "Forecast Factory"

A REAL PROPERTY AND A REAL

In 1922, Lewis Fry Richardson developed the first numerical weather prediction (NWP) system.

He divided the world into grid cells and applied finite difference solutions of differential equations.

His first attempt to calculate weather for a single eight-hour period took six weeks.

He proposed a "forecast-factory" of 64,000 people armed with mechanical calculators lead by a conductor to coordinate the forecast.

Yet even with this fanciful factory, Richardson would only be able to calculate weather about as fast as it actually happened.

[1-day per day]

http://celebrating200years.noaa.gov/foundations/numerical_wx_pred/theater.html

TALAM PARAMA PARAMA PARAMA PARAMA PARAMA

http://www.gfdl.noaa.gov/cms-filesystem-action/user_files/jrl/gcm/jrl_gcm_doc-history.pdf

1950, The First Numerical Weather Simulation

Jule Charney and John von Neumann completed a two-dimensional simulation on the ENIAC in 1950.

It covered North America with 270 points about 700 km apart. Starting with real weather data for a particular day, the computer solved all the equations for how the air should respond to the differences in conditions between each pair of adjacent cells.

It took so long between each run to print and sort punched cards that "the calculation time for a 24hour forecast was about 24 hours, that is, we were just able to keep pace with the weather." [1-day per day]

Hurricanes in Global Models [circa 2003]

Pioneering ¹/₄-deg runs with the NASA fvGCM model

1/4-degree (25-km) resolution

256-processors of the SGI Origin at NCCS 512-processors of the SGI Altix "Columbia" at NAS

Hurricane Isabel appears as a large swirl of water vapor moving out of the tropics.

Global models in the mid-2000s were quickly becoming valuable tools for modeling tropical cyclone tracks.

Need higher resolution and more scalability to resolve realistic intensities.

Hurricane Isabel, September 6-20 2003

Pursuing Higher Resolutions: improving scalability A move away from Lat-Long Grids

The Cubed-Sphere (hexahedron - quadrilaterals)

- Quasi-Uniform mapping of the cube to a sphere
- Quadrilateral shaped cells
- Ideal for 2D X-Y Domain Decomposition (MPI parallelism)
- Suitable for adaptive mesh refinement

1,000 cores → 70,000 cores

25-kilometers

3.5-kilometers

Night Lights 2012 using Suomi NPP VIIRS data at increasing horizontal resolution

Science and Computing Required to Increase Resolvable Scales

Resolution (km)	Resolvable ~12x (km)	Computing (Cores)
25.0	300	800
12.5	150	6,400
3.0	36	462,963
0.1	1.5	6,400,000,000
10 (m)	120 (m)	21,600,000,000,000,000

Science and Computing Required to Increase Resolvable Scales

Resolution (km)	Resolvable ~12x (km)	Horz Factor	DT Factor	Computing (Cores)
25.0	300	1	1	800
12.5	150	4	2	6,400
6.0	72	17	4	57,870
3.0	36	69	8	462,963
1.0	12	625	25	12,500,000
0.1	1.5	40000	200	6,400,000,000
10 (m)	120 (m)	90000000	30000	21,600,000,000,000,000

Cloud-Permitting with GEOS-5

Pioneering 3.5-km Global Cloud Permitting Run with GEOS-5 [circa 2009]

Jan 02, 2009

3.5-km GlobalResolution(50 million grid cells)

4,000-processors of Discover SCU3

The first global cloud permitting simulation with GEOS-5, and the highest resolution run of any global model at the time

Throughput: ~1-day per day

Cloud-Permitting with GEOS-5

Pioneering 5-km Global Cloud Permitting Forecast with GEOS-5 [circa 2010]

5-km Global Resolution (24 million grid cells)

10,000-processors of Discover SCU4

Medium range weather forecasts at global cloud permitting resolutions with GEOS-5

Throughput: ~5-days per day

2012 Hurricanes with 25-km DAS and Superstorm Sandy Forecast at 6-km 12,000 Cores of Discover SCU7 [circa 2012]

Goddard Earth Observing System Model (GEOS-5) Global Modeling and Assimilation Office http://gmao.gsfc.nasa.gov 850 hPa Wind Speed (mph)

60

70

100

20

10

30 r

40

2012/10/29 06:45

Hurricane Katrina with GEOS-5 (10-years of model improvements)

NASA

Hurricane Katrina with GEOS-5 (10-years of model improvements)

Water Vapor [kg m-2] (Anomaly from zonal mean)

10-meter Wind Speed [mph]

2005-08-22 21:15z

6-km GEOS-5 Global Downscaling Non-Hydrostatic Convection Permitting Physics

7-km Global 2-Year Simulation

7,000 Cores of Discover SCU9 12 days per day

[circa 2013]

Global Modeling and Assimilation Office

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280

Adding Complexity to Global Models

Chemistry: Carbon Cycle Gases Aerosols Indirect/Direct Effects EARTH SYSTEM MODEL H20(g) Aerosol Direct Effec Grant Eff 4FROSOLS Land Ic Air-sea CO Exchange OVERTURNING

Adding Complexity to Global Models

Volcano<u>es</u>

Photograph of ash plumes streaming from Mt Etna, Italy in 2001 taken by the Expedition 2 crew aboard the International Space Station

Ship Tracks

Narrow well established shipping lanes observed by Ozone Monitoring Instrument (OMI) on NASA's Aura satellite between 2005 and 2012

Smoke/Haze

Haze over China in October 2010as seen by the Moderate Resolution Imaging Spectroradiometer (MODIS)

Interactive Chemistry and Aerosols Dust

May 2001 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) reveals a large, thick plume of aerosols blowing eastward over the North Atlantic Ocean

7-km Global Aerosol Simulation

2006-08-17 00:00z

12 days per day [circa 2013]

7,000 Cores of Discover SCU9

2015 Discover Expansion at NCCS

NASA's Center for Climate Simulation (NCCS) doubles the peak performance of the Discover supercomputer

200	07 20	08 20	09 20	10	20)11	2012	20	13 20	014 SCI	19
							9		1.7 Pflops	255 Tb 58K co	ytes pres
	SCU1/2 2.8 Tbytes 2,584 core	SCU3 7.2 Tbytes 4,632 core	SCU4 25 Tbytes 11K cores	S 38 15 15	CU5	SCU 74 Tbyte 32K cor Sc:	alable (SCU)	Tbytes cores Units	43K cores SCU8	100	AFLOPS
	Discover assem scala comm Older regularly techno	system – a bly of multipl ble units bui nodity compo scalable un replaced wi logy units ac	h evolving le Linux ilt with onents. its are th current cquired		E	Processo 50-year po factor	r memo eriod, g	ry, over rows by billion	 	10 1	TER
	competit from IBM	tively, and ha	ave come GI. (Duffy)								

Carbon Dioxide Column Concentration [ppmv]

2000-01-01 00:00z

360 362 364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394 396 398 400 402 404 406 408 410 412 414 416 418 420

12.5-km GEOS-5 Carbon Dioxide [circa 2015] A decade of Simulation Data 7,00

7,000 Cores of Discover SC10 ~30 days per day

NASA

369 PPMV

2000-01-01 00:00z

Sulfur Dioxide Column Concentration [Dosbon Units]

2 4 6 8 10 12 14 16 18 20

12.5-km GEOS-5 Sulfur Dioxide [circa 2015]A decade of Simulation Data7,0

7,000 Cores of Discover SC10 ~30 days per day

Looking Toward the Future Mesoscale Convective Complex (MCC)

A mesoscale convective complex is a large thunderstorm

- Typical in spring over the Midwest US
- Progress over long distances
- Heavy rainfall, strong winds, frequent lighting, hail and often tornadoes.

Looking Toward the Future

Supercell Thunderstorms

- An isolated severe rotating thunderstorm
- Broad anvil cloud top
- Overshooting convective updrafts
- Damaging winds, large hail, tornadoes

International Space Station Astronaut Photograph Supercell Thunderstorm over Africa

GOES-14 Satellite Observations

- 1-km Resolution
- 1-minute Super Rapid Scan Operations for GOES-R
- Thunderstorms over southwest Texas, 19 May 2015

GEOS-5 Clouds and Thunderstorms [circa 2015]

NASA

Global Modeling and Assimilation Office

Mean All-sky 10.5 micron Brightness Temperature [K]										
195	205	215	225	235	245	255	265	275	285	295

Weather **Outbreaks**

GEOS-5 Aerosol Optical Depth [circa 2015]

1.5-km Global Resolution (200 million grid cells)

30,000-processors of Discover SCU10

The highest resolution global simulation to date, and the first ever to include interactive aerosols and carbon

Throughput: ~1-day per day

June 2012 Severe Weather Outbreaks

The Pursuit of Exascale

Resolution (km)	Resolvable ~12x (km)	Computing (Xeon Cores)
1.0	12	12,500,000
0.1	1.5	6,400,000,000
10 (m)	120 (m)	21,600,000,000,000,000

Tornado resolving global models 1-km FV3

http://www.gfdl.noaa.gov/visualizations-mesoscale-dynamics

GEOS-5 Global Clouds 1.5-km Resolution [circa 2015]

