
cli_filter
command line filtration, manipulation, and introspection of job
submissions

Douglas Jacobsen

Systems Software Engineer, NERSC

Slurm User Group * 2017/09/25

What is cli_filter
cli_filter is a new stackable plugin infrastructure that adds hooks to
allow site-definable, configurable behavior of the salloc, sbatch,
srun plus limited support for sbcast.

Motivation
Slurm job submission is enormously flexible with over a hundred
potential options and many fold more valid permutations.

Challenges
enforcing site policy challenges solely with job_submit

detailed communication with users via job_submit is
limited

discovery/tracking of user behavior

Enforcing custom site policy
job_submit plugins are the de facto mechanism for customizing Slurm
policy enforcment, e.g., by rejecting some jobs, rewriting job based on
user requests, etc.

Issues with server side policy processing
job_submit plugins

run while locks are held in slurmctld, must avoid long-running
checks

busy slurmctld may get busier processing job requests that will
be rejected

some desirable checks may not be runnable from controller
node

some functionality is CLI only, not exposed to server side

Client side policy enforcement
site policy enforced in sbatch, salloc, srun

Client­side enforcement of site policy can
reduce the workload of slurmctld

run processes on parallel filesystems you might prefer your
controller node didn’t get jammed up upon.

WARNING
client side manipulation (wrapper scripts, cli_filter) cannot be
relied upon for security needs.

Simple job_submit/lua

function slurm_job_submit(req, partitions, uid)

 return check_qos(req, nil)

end

function slurm_job_modify(req, desc, partitions, uid)

 return check_qos(req, desc)

end

function check_qos(req, desc)

 local qos = read_str_field(req, desc, "qos")

 if qos == "premium" then

 slurm.log_user('premium job disabled at present, please use regular')

 return slurm.ERROR

 end

 local user_balance, acct_balance, cost_est

 user_balance = get_user_balance(job, desc)

 cost_est = get_cost_estimate(job, desc)

 if user_balance < cost_est then

 req['qos'] = 'scavenger'

 end

 return slurm.SUCCESS

end

User Communication

job_submit provides slurm.log_user() to return a message back

user CLI

only in case of job rejection

Often, we want to warn the user about a modification automatically

made, or some more visible message (unless the CLI --parsable flag

is set).

Discovery/tracking of user behavior
Monitoring user behavior pervasively helps site staff to

provide support for user requests

discover patterns of usage to set staff priorities

proactively identify users and workloads that may benefit from
consulting assistance — or other intervention

Slurm CLI are the User Interface
Users interact with them explicitly with

command line options (command-specific options)

#SBATCH statements (script-specific options)

environment variables set explicitly by the user (e.g.,
$SBATCH_RESERVATION)

and implicitly
by environment variables propagated within the job, like srun

responding to $SLURM_JOB_ID

Example script

test.sh:

Execution:

#!/bin/bash

#SBATCH -p regular

#SBATCH -t 5:00:00

#SBATCH --constraints=haswell

srun ./my_openmp_app "$@"

sbatch -N 5 --reservation=dmj test.sh input.d

Analysis of the example
Script makes it clear that the user requested

the regular partition

a 5 hour time limit

haswell nodes.

Issues
The number of nodes, reservation, and script arguments are not
recorded in the script.

It appears to be an openmp application, was
$OMP_NUM_THREADS set? cpu_binding style?

Debugging this user’s experience will rely somewhat on their
memory of the job submission.

Monitoring Slurm Data
Needed Data beyond the Slurm Database
slurmctld data structure representations of job/step data

jobcomp/nersc

capturing and logging all job and step submissions options, including
aspects of the environment

cli_filter (this topic)

jobacctgather profiling data (site enforced)

need more scalable backends, hdf5 file per node per job doesn’t
scale well

early 2018 NERSC priority

What was cli_filter again?
cli_filter adds hooks to allow site-definable, configurable behavior of
the salloc, sbatch, srun plus limited support for sbcast.

Implemented for slurm versions
17.02

17.11

Not included with SchedMD distribution (in progress), should be
considered tech preview right now.

cli_filter hook flowchart

Programming Interface
cli_filter plugins work by manipulating the opt data structure used in
each slurm client executable. Use code generator to map option data
structure to get/set functions

lua interface handles string/boolean/numeric types in their
appropriate mappings

C-interface indirectly handles everything through C-strings to avoid
cli_plugins from directly having to handle native cli types

C-based plugins can still use native data structures if preferred

cli_filter setup_defaults()
setup_defaults

Runs once per cli_filter plugin per CLI execution

Non-zero exit will terminate the CLI execution

Runs after opt data structure allocation and initialization,
before environment or option processing

Run long-running checks exactly once

Implementations
cli_filter/user_defaults reads ~/.slurm_defaults to set options

cli_filter/lua to set site default options

cli_filter/user_defaults

Set defaults command line options in $HOME/.slurm_defaults.

Accepts (<command>:?)(<cluster>:?)<option> = <value>
syntax.

$HOME/.slurm_defaults example:

partition = regular
cori:constraints = knl,quad,cache
edison:constraints = ivybridge
salloc:*:qos = premium

cli_filter pre_submit()
pre_submit

Runs once per job-pack per cli_filter plugin per CLI execution

Non-zero exit will terminate CLI execution

Runs after all option processing but before slurmctld message
preparation (can change options here)

Implementations
cli_filter/lua plugin can be used to read options, implement
policy, change options or terminate job submission

cli_filter/lua example

function slurm_cli_pre_submit(cli_type, options)

 -- dangerous to run on controller node, may get stuck if PFS misbehaving

 local fs_quota_auth = os.execute("/usr/bin/myquota -c")

 if fs_quota_auth ~= 0 then

 slurm.log_error("ERROR: in violation of quota limits. " ..

 "Job submission disabled.")

 return slurm.ERROR

 end

 -- TODO: check options['workdir'] to check aux filesystem quotas

 if cli_type == CLI_ALLOC and options["qos"] ~= nil

 and options["qos"] == "interactive" then

 options["immediate"] = 30

 end

 local balance = io.popen("/something/to/get/external/accounting")

 local time_requested = calculate_time(options)

 if balance > time_requested and not options["parsable"] then

 slurm.log_info("WARNING: Low on allocation, your job moving to scavenger")

 end

 return slurm.SUCCESS

end

cli_filter post_submit()
post_submit

Runs once per job-pack per cli_filter plugin per CLI execution

Non-zero exit will attempt to terminate job (invalid for sbatch)

Runs after all option processing but before slurmctld message
preparation (can change options here)

Implementations
cli_filter/lua plugin can get data and log it

cli_filter/syslog dumps json record of submission to syslog

cli_filter/syslog Example output

Sep 22 22:08:49 slurmdev srun/syslog[24345]: post_submit: {"job_id":182,"accel_bind_
 "alloc_nodelist":"slurmdev","allocate":"false",
 "argc":"1","argv":"hostname|",
 "bcast_flag":"false","begin":"0","ckpt_dir":"\/var\/slurm\/checkpoint",
 "ckpt_interval":"0","cmd_name":"hostname","compress":"0",
 "contiguous":"false","core_spec":"65534",
 "core_spec_set":"false","cores_per_socket":"-2",
 "cpu_bind_type":"0","cpu_bind_type_set":"false",
 "cpu_freq_gov":"4294967294","cpu_freq_max":"4294967294",
 "cpu_freq_min":"4294967294","cpus_per_task":"0","cpus_set":"false","cwd":"\/home\/
 "cwd_set":"false","deadline":"0","debugger_test":"false",
 "delay_boot":"4294967294","disable_status":"false",
 "distribution":"1","egid":"-1","euid":"-1",
 "exclusive":"false","extra_set":"false","gid":"100",
 "hint_set":"false","hold":"false","immediate":"0",
 "job_flags":"0","job_name":"bash","job_name_set_cmd":"false",
 "job_name_set_env":"true","jobid":"182","jobid_set":"false",
 "join":"false","kill_bad_exit":"-2","labelio":"false",
 "launch_cmd":"false","mail_type":"0","max_exit_timeout":"60",
 "max_launch_time":"0","max_nodes":"1","max_threads":"60",
 "max_wait":"0","mem_bind_type":"0","mem_per_cpu":"-2",
 "min_nodes":"1","msg_timeout":"10","multi_prog":"false",
 "multi_prog_cmds":"0","network_set_env":"false","nice":"-2",
 "no_alloc":"false","no_kill":"false","no_rotate":"false",

"nodes set":"true","nodes set env":"true",

Configuration

slurm.conf

$sysconfdir/cli_filter.lua - for cli_filter/lua

CliFilterPlugins = lua,user_defaults

function slurm_cli_setup_defaults(cli, opts)
 return slurm.SUCCESS
end

function slurm_cli_pre_submit(cli, opts)
 return slurm.SUCCESS
end

function slurm_cli_post_submit(cli_opts)
 return slurm.SUCCESS
end

One lua script to rule them all

/etc/slurm/job_submit.lua

/etc/slurm/cli_filter.lua

The lua scripts are just stubs and call shared code. This shared code
can potentially be shared amongst all clusters (NERSC does this),
with the variable definitions covering the local cluster configurations.

<variable definitions>

package.path = package.path .. ';/usr/lib/nersc-slurm-plugins/?.lua'
require "lib_job_submit"

<variable definitions>

package.path = package.path .. ';/usr/lib/nersc-slurm-plugins/?.lua'
require "lib_job_submit"

One lua script to rule them all

/usr/lib/nersc-slurm-plugins/lib_job_submit.lua

function slurm_job_submit(req, part, uid)
 return check_qos(req, nil)
end

function slurm_job_modify(req, rec, part, uid)
 return check_qos(req, rec)
end

function slurm_cli_setup_defaults(cli, opt)
 return slurm.SUCCESS
end

function slurm_cli_pre_submit(cli, opt)
 return check_qos(opt, nil)
end

function slurm_cli_post_submit(jobid, cli, opt)
 local json
 local json_env
 json = slurm.cli_json(job, opts)
 json_env = slurm.cli_json_env()
 local msg = '{"host":"cluster","type":"slurm","job":' .. json .. ',"env":"' .. json_env
 proc = io.popen("/usr/bin/nc <loghost> <port>", "w")
 proc.write(msg)

proc.close()

Current State
Code currently at

17.11:

17.02:

https://github.com/dmjacobsen/slurm/tree/cli_filter

https://github.com/dmjacobsen/slurm/tree/cli_filter­
17.02

Future Work
Upcoming

Working with SchedMD to explore merge options

Ideally, functionalize routines called by getopt() switch() so
cli_filter updates can (optionally) re-run slurm actions upon
pre_submit() update

Mechanism for transmit data from cli_filter to job_submit, and
verify the message is truly from cli_filter pre_submit()

Questions?

