
SLURM	User	Group	2017
Some	slightly	unconventional	use	cases

Chris	Hill,	Director	Research	Computing,	MIT
+	Rajul Kumar	(Northeastern),	Evan	Weinberg	(BU),	Naved Ansari	(BU),	Tim	

Donahue.



Talk	topics
• Extending	a	Slurm production	environment for	a	couple	of	use	cases	that	
are	little	beyond	“standard	users”
Part	1	- incorporating	local	virtualized	resources	(in	our	case	from	a	local	Openstack
instance†),	and	using	this	as	a	way	to	do	fully	automated,	transparent	to	user,	
checkpoint-restart	for	high-throughput	computing	(HTC)	workloads.

Part	2 - creating	a	“self-service”	(i.e.	no	admin	involvement)	Slurm reservation	system	
for	managing	temporary	loaning	of	hardware	to	non-production	environments.

• Goals	in	coming	to	Slurm user	meeting
• Connect	to	a	great	community	that	has	produce	software	that	is	technically	very	
capable,	and	automates	some	vexing	equitable	sharing	challenges

• discuss	and	get	feedback	on	a	couple	of	feature	ideas	that	have	emerged	from	our	
work

† audience	participation	question.	Who	does	not	have	a	bunch	of	folks	trying	to	run	Openstack in	their	data	
center?	



Our	production	environment
• MIT	operates	two	shared	pools	(A,B)	of	capacity	at	MGHPCC.	
Both	under	Slurm for	research	community	that	centers	on	MIT	
but	spans	many	other	institutions	(local	and	global)

• 1500	compute	nodes,	>30,000	x86	cores	(60,000	with	HT	etc..),	
5+	PiB high-speed	storage,	~20%		nodes	have	some	GPU	(K20,	
K80,	P100;	2	DGX-1	nodes),	Infiniband FDR	and	EDR	connected.	

• >1000+	active	individual	users;	gateway	clients	for	Open	
Science	Grid;	MIMIC2	etc…ç 10,000+	pool	users)

• Global	access	for	projects	around	MIT	research	community,	
includes	collaborators	in	every	continent.	

• Typical	workload	is	broad	mix	of	tightly	coupled	(multiple	fully	
non-blocking	zones	up	to	4500	cores,	one	OPA	zone)	and	
ensemble	parallelism.	Some	workloads	combine	both.

• Multiple	100Gb/s	ingress,	egress	paths	to	multiple	login,	viz
and	data	transfer	devices.	

• Application	domains	range	from	music,	economics,	quantitative	
social	science	çè basic	physics,	Earth	and	planetary,	fusion,	
chem,	materials

• Thousands	of	Slurm jobs	every	day,	several	different	groupings	
of	node	configuration	(mem,	CPU,	accelerators)

• Located	within	MGHPCC	research-computing	data	center

Feed
up	to	35MW.	>95%	non-
fossil	fuel.	

72	dark	
fiber		pairs

Peering	ESnet,	I2,	
AWS,	M$,	RENs,	
GEANT,	etc..	in	
Boston	and	
Manhattan

About	MGHPCC

Heat	into	water	to/from	
computer	room	floor.

Currently	hot-aisle	with	IRC	
(up	to	30KW	rack),	begin	to	
look	at	direct	liquid	cool	(up	
to	80KW	rack).

http://www.mghpcc.org
(3	of	Tues,	Sept	26	Slurm talks	also	originate	from	
MGHPCC,	Slurm an	invaluable	resource	at	facility)



• Using	OStack/KVM	to	enable	transparent	(to	user/job)	checkpoint	to	
disk	(freeing	CPU,	network,	memory	resources).

• Tweak	Slurm “state”	model	(ALLOCATED…DOWN	etc..)	to	create	an	
alternate	to	either	disruptive	or	memory	resource	keeping	pre-
emption
• Motivation	is	to	increase	the	useful	work	achieved	by	baseload	back-fill	high-
throughput	computing	(HTC)	jobs



• HTC	jobs	are	a	great	approach	to	ensuring	a	quasi-
infinite	supply	of	relevant	tasks	that	can	fill	idle	slots	
created	by	complex	job	mix
• Utilize	a	low-priority	“opportunistic”	partition	that	is	
forcefully	preempted	by	higher-priority	partition	
jobs	that	target	the	same	resource	(node).
• This	can	lead	to	increased	actual	utilization	(i.e.	
more	real	work	gets	done),	but	it	can	also	increase	
apparent	utilization	(i.e.	amount	of	time	cluster	is	
running	work	that	is	may	have	already	run).
• Pathology/pattern	for	this	is	when	opportunistic	
HTC	jobs	are	repeatedly interrupted	before	they	can	
checkpoint	their	progress	to	somewhere	persistent.



An	OSG	experiment
• Open	Science	Grid	(OSG	-
https://www.opensciencegrid.org)	is	a	global	high-
throughput	computing	framework	that	grew	out	of	the	
CONDOR	project	in	Wisconsin	

• Today	OSG	supports	a	distributed	ecosystem	of	science	analysis	centered	on	the	Large	
Hadron	Collider	with	an	extensive	system	of	authorization,	credits	and	resources	
sharing.
• The	OSG	Slurm Glidein system	allows	a	Slurm cluster	to	accept	OSG	jobs	queued	up	by	
some	or	all	of	the	OSG	research	community,	subject	to	some	controls/specification.	
• OSG	jobs	are	some	unit	of	computation	expressed	in	a	script	in	which	the	OSG	
framework	+	Glidein installation	provides	an	environment.	This	allows	the	work	to	be	
relatively	portable	and	access	global	software	and	data	inputs
• In	general	OSG	jobs	do	not	require	a	built	in	checkpoint	frequency.
• A	Slurm cluster	providing	opportunistic	cycles	does	not	have	a	way	to	determine	if	OSG	
jobs	are	doing	any	checkpointing.	
• Consequently	preempted	a	OSG	jobs	may	repeatedly	enter	the	backfill	pipeline	and	
repeat	exactly	the	same	steps	they	previously	computed,	replacing	actual	useful	
utilization	with	apparent	utilization.



Introduce	VMs	with	full	checkpointing to	disk	for	OSG
• Broadly	we	want	to	try	and	create	Slurm “nodes”	that	are	virtual	machines	(VMs)	
and	then
• transfer	“bare-metal”	nodes	to	a	VM	host	role	when	there	is	no	work	in	queue	for	bare	
metal	resources

• trigger	the	VMs	to	instantiate	on	the	bare-metal	“hosts”
• have	VM	accepting	work	from	opportunistic	partition
• trigger	a	VM	suspend	to	disk	when	work	appears	for	the	bare-metal	resource
• trigger	VM	to	restart	(from	where	it	left	off)	when	bare-metal	resource	becomes	free
• do	this	relatively	transparently	to	Slurm and	OSG	pipelines



Pictorially	we	want	to	have	two	nodes	(e.g.	BM-node001,	
VM-node001)	running	on	same	hardware
BM-node001

VM-node001

Time

BM-node001

VM-node001

BM-node001

VM-node001
etc…

S1 S1S2

S1:						node=BM-node001 State=ALLOCATED, node=VM-node001 State=DOWN
S2:						node=BM-node001 State=DOWN, node=VM-node001 State=ALLOCATED

Transition	between	S1	and	S2	is	handled	by	a	daemon	that	watches	what	is	
queued	to	higher	priority	partition(s)	holding	BM-node001,… and	what	is	
queued	to	“opportunistic”	partition(s)	holding	VM-node001,…

Same	daemon	can	handle	restart/suspend	of	VM-node001,… to	disk.



Pictorially	we	want	to	have	two	nodes	(e.g.	BM-node001,	
VM-node001)	running	on	same	hardware
BM-node001

VM-node001

Time

BM-node001

VM-node001

BM-node001

VM-node001
etc…

S1 S1S2

S1:						node=BM-node001 State=ALLOCATED, node=VM-node001 State=DOWN
S2:						node=BM-node001 State=DOWN, node=VM-node001 State=ALLOCATED

Transition	S1	è S2	whenever	there	is	nothing	pending	to	higher	priority
Transition	S2	è S1	whenever	we	see	something	pending	in	higher	
priority

Can	almost	do	this	with	Slurm and	scontrol as	is	except….



Pictorially	we	want	to	have	two	nodes	(e.g.	BM-node001,	
VM-node001)	running	on	same	hardware
BM-node001

VM-node001

Time

BM-node001

VM-node001

BM-node001

VM-node001
etc…

S1 S1S2

S1:						node=BM-node001 State=ALLOCATED, node=VM-node001 State=DOWN
S2:						node=BM-node001 State=DOWN, node=VM-node001 State=ALLOCATED

If	we	force	VM-node001	DOWN	when	a	job	is	running	then	Slurm heartbeat	
notices.	It	then	either	requeues jobs,	or	marks	it	failed.
For	now	we	have	modified	Slurm code	to	allow	heartbeat	checks	for	nodes	in	
namespace	VM- to	be	turned	off.	
If	we	do	this	then	this	sort	of	cycle	can	be	supported,	potentially	increasing	actual	
useful	utilization	for	back-fill	style	HTC	(depending	on	a	sites	preemption	cycles)



Part	1	conclusion	- a	possible	new	“feature”
• This	is	a	potentially	valuable	workflow	to	support	we	believe.
• Looking	for	some	feedback	
• Unilaterally	disabling	heartbeat	is	clearly	not	a	good	idea	and	will	end	
badly!
• Would	a	node	“SLEEPING”	state	in	Slurm help	this	workflow?	
• How	to	distinguish	between	SLEEPING	and	DOWN
• Would	it	need	a	timeout	(in	case	node	dies	in	SLEEP	etc…,	i.e.	SLEEPING	UNTIL…?)

• Similar	debate	occurred	around	parallel	images	in	Fortran	2015.	They	can	
be	RUNNING;	STOPPED;	FAILED
• How	this	works	in	practice	for	large	systems	of	images	is	TBD	though!

• More	
https://www.youtube.com/watch?v=yRtyvfzDt94

https://github.com/CCI-MOC/hpc

Rajul explaining	how	this	works	with	OpenStack	VMs

Includes	experimental	modifications	to	Slurm heartbeat	



• Slurm as	a	way	to	automate	handling	requests	for	loaning	hardware	outside	of	
Slurm cluster.
• These	requests	occur	for	us	around

• Temporary	use	of	“bare	metal”	hardware	for	special	software	stack	interests	– custom	
OS	hacks	(I/O,	network,	memory	management	experiments)

• Temporary	use	of	“bare	metal”	hardware	for	private	data	experiments
• Beyond	capabilities	of	KVM,	Singularity	etc….	to	manage	incompatible	software	stacks

• Exploring	Slurm as	a	useful	master	
scheduler for	this	working	in	
conjunction	with	a	proxy	tool	
(Hardware	Isolation	Layer	– HIL)	for	
managing	controlled	access	to	
privileged	network	and	out-of-band	
actions



General	“Hardware	Isolation”	Scenario

BM-node001

BM-node002

BM-node003

Time

BM-node001

BM-node002

BM-node003

BM-node001

BM-node002

BM-node003

S1 S2 S1
Use	Slurm as	base	for	master	control	for	self-service,	user	controlled	
node	transfer	requests	(S1	è S2)
Slurm provides	rules	and	manages	transfer	and	“repo”	automatically	(S2	
è S1) †

†	human	nature	1	- nobody	ever	returns	nodes	“eagerly”,	need	to	automate	repo.	

S1:	All	nodes	part	of	
main	production	
cluster/network.	
Standard	software	etc…

S2:	Red	nodes	are	
temporarily	part	of	
some	other	
cluster/project/networ
k.	Unknown	software	
etc…



Typical	human	style	requests

In	both	cases	requests	are	for	software	stacks/privacy	needs		that	are	
incompatible	with	Slurm cluster	general	setup.

We	want	these	users	to	be	able	to	use	Slurm to	automate.	Let	user	request	
transfer	of	nodes	via	Slurm; trigger	transfer	and	repossession	of	nodes.	
Transfer	and	repo † steps	are	other	software,	but	we	want	Slurm to	be	the	
master	scheduler.
†	human	nature	2	– we	have	never,	ever	received	a	message	to	say	“we	are	done	with	resources”.	



Approach	– two	part	(Slurm and	outside	of	Slurm)
Slurm piece
1. Create	partition	that	controls	which	nodes	and	which	users	can	request	

hardware	isolation,	isolation	duration	limits	etc….
2. Users	can	submit	requests	(via	sbatch)	to	that	partition	and	use	Features	to	

request	nodes	from	a	certain	subset	(e.g.	some	nodes	from	a	particular	rack).
3. A	prolog	is	triggered	by	partition	name	that	creates	Slurm reservations	

corresponding	to	the	transfer	and	repossession	actions.

ReservationName=cnh-tufts-physical-expt StartTime=2017-07-13T09:52:55 ...

ReservationName=flexalloc_moc_20170410_rack7_8 StartTime=2017-09-01T11:12:27 …

A	reservation	name	PREFIX_GROUP	is	recognized	by	external	software	that	then	applies	
appropriate	isolation	steps.



Approach	– two	part	(Slurm and	outside	of	Slurm)
Interface	to	non	Slurm pieces
1. Slurm reservations	are	monitored	by	daemon	that	triggers	transfer	actions	

using	separate	software	(HIL	and	other	tools)
• Specific	VLAN,	PKEY	and	enable/disable	application	on	network	interfaces
• Node	shutdown

2. Slurm reservation	name	prefix	are	used	to	indicate	to	daemon	which	
reservations	are	Hardware	Isolation	requests

3. Two	reservations	are	created	for	each	request.	One	triggers	transfer	when	it	
becomes	active,	one	triggers	repossession	when	it	becomes	active.	



Conclusions
• Status	– actively	being	tested	as	a	replacement	for	cumbersome	hand	process
• See	More	–

• https://github.com/mghpcc-projects/user_level_slurm_reservations
• https://github.com/CCI-MOC/hil

• Alternates	exist	in	CS	world
• Chameleon	- Blazr
• Ostack – Ironic
• Emulab
• All	appear	much	harder	to	see	how	they	would	fit	in	a	production	HPC	environment
• Slurm as	“master”	+	HIL	strategy	seems	particularly	elegant	(to	us!).

• Probably	not	supposed	to	use	Slurm for	this	(or	even	do	this)	but	it	looks	like	it	
will	work	rather	nicely	especially	when	paired	with	the	HIL	proxy	for	privileged	
access/operations.



Questions?


