

Brigham Young University
Fulton Supercomputing Lab

Ryan Cox

SLURM User Group 2013

Fun Facts

● ~33,000 students

● ~70% of students speak a foreign language

● Several cities around BYU have gigE at home

● #6 Top Entrepreneurial Programs: Undergrad (Princeton Review)

● Many BYU grads go on to write schedulers

● #1 Stone Cold Sober – 15 years running (Princeton Review)

● #1 on “25 Colleges Where Students Are Both Hot And
Smart” (Business Insider / College Prowler)

Staff

● 4 FTEs

– Operations Director

– 2 x Systems Administrator

– Applications Specialist / User Support
● 4 Students

– Hardware Technician

– Web Developer

– 2 x Applications Specialist

Organization

● Supercomputing reports to CIO

● Support BYU, BYU-Idaho, BYU-Hawaii

● Free access for faculty, grads, undergrads, collaborators

● Large number of undergrad research assistants

Compute Hardware

● m6 - 320 Dell M620 blades

– Dual eight core Sandy Bridge (2.2 GHz)

– Infiniband
● m7 - 512 Dell M610 blades

– Dual six core Westmere (2.67 GHz)

– Gigabit Ethernet
● 8 Dell M910 blades (256 GB RAM each)

● 4 Privately-owned Dell blade enclosures (52 x M610's)

● A few GPUs, Xeon Phi, other assorted hardware

● Total: 12,100 cores

Using SLURM since January

● Switched to SLURM from Moab/Torque in January

● Commercial support from SchedMD

● Very tight timeline to switch due to license expiration
and a hectic schedule

● No desire to immediately retrain users on SLURM

Transition to SLURM

● Split-brain, rolling upgrade to SLURM from Moab/Torque

– Moved nodes to SLURM as jobs freed and queue drained

● Wrapper scripts: $jobid < 4000000? That's a SLURM job!

– SLURM? Use SLURM wrapper

– Moab? Call real Torque/Moab command
● Heavily modified SLURM's qsub wrapper to work with our

installation, should have written from scratch. ~99% compat.

● Wrote Moab wrappers (not contrib-worthy code, trust me)*

* Contact me if you're not scared off by hacked-together PHP code from our web developer that
we use in production... it does work but we don't want our names attached to it :)

What they don't know
won't hurt them

● Users worry about change, why give advance notice?

● No notification whatsoever to users before switch to SLURM*

● Email from us: “New jobs go to SLURM, your scripts and the
PBS commands stay the same. Running jobs keep running”

● Transition went well

● Most users oblivious, others excited to try SLURM tools

● Excellent support from SchedMD

– Few bugs

– Bugs typically patched within hours

* Yes, we are that crazy

General policies (1 of 2)

● Max walltime is 16 days. Will reduce to 7 days in January

● What is the max walltime at your site?

● Shared node access

– Users must request memory. Enforced w/cgroups

– pam_namespace creates temporary /tmp and
/dev/shm per user*

– Future: require disk allocation & use quotas?
● Defaults: 30 min timelimit, 512M mem/core, 1 core

● Each PI has a SLURM account, all accounts equal

* http://tech.ryancox.net/2013/07/per-user-tmp-and-devshm-directories.html

General policies (2 of 2)

● GrpCPURunMins per account

– Staggers the job start/end times

– Encourages shorter jobs
● No maximum node/job/core count per user or account

● Ticket-Based multifactor (previously multifactor2)

● Feature-based scheduling: no requesting queue/partition

Feature-based scheduling

● Users select necessary node features

– ib, avx, sse4.2, sse4.1
● Features + Lua script limits which partitions are

available to the job

● Least capable nodes are prioritized

● Users don't have to watch utilization of each partition;
better load balancing

Job Submit Plugin

● all_partitions plugin lists all partitions for lua to
examine (subject to AllowGroups)

● If special “empty” partition is present, lua script knows
the user didn't request a specific partition

● Remove any partitions they can't or shouldn't run in

● Example: Allow access to big memory nodes if the job
needs that much memory, deny partition access if not

Transient node failures

● We miss Torque's ERROR handling on compute nodes

● Filesystem check timed out? That should clear soon

● Drain/resume tracking of transient failures + real
hardware problems + others: too complex

● Health check scripts create 10 minute reservations

● Scripts run at least once every ten minutes

User Experience

● Wrote “whypending” tool to make obvious SLURM
messages even more obvious. Shows partial/full idle
count within partition, taking into account memory req

● Web services API

● WIP: Custom script parses Gaussian params and
others to submit sane resource requests

● 2-5 minute training videos on YouTube channel

● Web-based Script Generator (SLURM/PBS)
– https://marylou.byu.edu/documentation/slurm/script-generator

Script Generator (1 of 2)

Script Generator (2 of 2)

Wishlist (1 of 2)

● Custom job submit plugin error messages (in 13.12)

● Only n jobs per user or account accrue queue time for
priority calculation purposes (eliminate benefits of queue
stuffing)

● Include accrued CPU time of running jobs in fairshare
calculations

– Currently, infrequent users can flood the system
with jobs until some of the jobs finish

● Transient failure handler like Torque pbs_mom's ERROR:
messages (we use reservations instead)

Wishlist (2 of 2)

● Per node per job stats

– Memory and CPU efficiency (used / allocated)
● cgroup enhancement: catch processes launched through ssh

– Create cgroups on each allocated node for a job even
if the node has no job steps (conf option?)

– Use /etc/ssh/sshrc to assign to job cgroup

– ssh{,d}_config: AcceptEnv/SendEnv SLURM_JOB_ID

– Finish jobacct_gather/cgroup plugin (13.12?)

– New option? “scontrol cgroup addpid jobid=<jobid>
pid=<pid>”

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

