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Slurm support on large machines

— Large machine specificities

Targeted systems

B Petaflopic machines

- TERA project : Tera-100
= >4k nodes
= >130k cores

- PRACE project : Curie

= >5k nodes
= >80k cores
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Slurm support on large machines

— Large machine specificities

Difficulties

B Uncommon scenarii
- Approaching the huge figures, you get the unexpected behaviors

B Different user needs, usages or mistakes
-~ Different allocation strategies
= Number of cores per nodes, of cores per sockets, of nodes, exclusive or not
= Dependencies
~ Exercising a lot of the Slurm (even hidden...) features
- With different levels of knowledge of what can be done on such systems
= Exp : srun -n 80000 sinfo ... why is it so slow ?

B Unavailability
- Slurm as the centerpiece of the resources access
= Many users impacted, many chances to get a phone call...
= Many persons waiting for an answer/correction ASAP

B Reproductibility issues
- Dynamic systems
~ Cost of trying to reproduce a problem at scale is prohibitive
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Slurm support on large machines

— Large machine specificities

Difficulties

B Distributed architecture
- A lot of components bound by complex networks
- The problem can be anywhere and anywhere is large

B A needle in the hay effect...
- Large volume of logs to analyze
= One single slurmdbd log file, ~ok
= One single slurmctld log file, ~ok
= One slurmd log file per compute node, ko...
- But can be centralized using a distributed syslog architecture
- Large amount of nodes to analyze
= |In terms of process states
= In terms of communication states
- Large volume of RPCs to analyze on the controller
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Slurm support on large machines

Methodology and tools

Methodology

B Be ready for the unexpected
- $ head -n 1 /etc/sysconfig/slurm
ulimit -c unlimited
- Check/validate core file generation at installation time
= « scontrol abort »
- Automate the restart of the controller
= « service slurm status || service slurm restart » in crontab (or equivalent)
- Unavailability should be reduced to less than the comm timeout
= Help to let the system available as much as possible
- Autonomous job submissions
- Ensure that you have the corresponding sources available

B When the unexpected comes...
~ ldentify the consequences of the issue
= Fatal : bugs, assertions or slurm components aborts
= Missing feature(s) : no more submission, no more fairsharing, no more backfilling, no more
check node_health, ...
= Missing resources : large number of {completing/unresponding/drain/...} nodes
= Job related issues : jobs failing to start/stop, steps no longer created, ...
= Performances : slow/unresponsive system, slowdowns trigerring wdg/timeouts, ...
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Methodology

B When the unexpected comes... (continued)

- Try to define the issue family
= Comm issues, DOS-like issues, Deadlock, Data corruption, Race condition, ...

- Try to identify the origin of the issue
= Collect all the relevant traces as long as you can (and think after)
- Issues can be transient and disappear as they appear
- Get relevant slurm log sections of every components
- Get « live » core dump using gcore
> save the associated binary too
> get it twice in case of possible deadlocks (easier to see what is frozen)
- Get processes states and open files
- Get systems states if possible
- Get communications states too (TCP sockets states)
- Store all of that in a directory and archive it
> you could need it in 6 or 12 month...
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Methodology

B When the unexpected comes... (continued)

- Try to make things work again ASAP (remember the unavailability drawback)
= Try to identify the faulty user/node/job
- If you are lucky, that will resolve the immediate issue, but will still require
Investigation to avoid future occurences
- Commonly the case for DOS-like and Comm issues
= Restart the faulty components
- It might work ... but will certainly destroy most of the evidences/clues
- Commonly the case for Deadlocks and Race conditions issues
= Bypass the faulty subcomponent temporarily if necessary and possible
- Commonly the case for Data corruption issues (might be others too)
= |f it still does not work...
- Commonly the case for Data corruption issues
> First backup your controller state files and jobs information (you might loose them)
- You 're entering a live session, you should get spectators sooner or later...
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Methodology

B Once worked around (or in live session in the worst cases)
- Look at the logs
= grep&sed[[&grep&sed]...] (in parallel on all the compute nodes if necessary)
= |t could provide useful error messages
- Easily searchable in the source code

- Look at the traces
= From core files to identify the suspicious calls
- Compare with a valid behavior to see the differences
- A lot of data are global in Slurm so you can easily access the vars using gdb
- Easily searchable in the source
= From open files / sockets stats to identify the communicators and their states

- Look at the source
= For the suspicious calls and use « git blame » to understand the reasons of the logic

- Make and then test your patches
= or ask for support on the mailing list with all the collected material ready :-)
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Slurm support on large machines

Methodology and tools

Useful tools or files on nodes

B Systems inspection
- Ivar/log/slurm*, /var/log/*
- ps, top, vmstat
- perf, oprofile
- |sof, nodeset (from clustershell package)
B Processes inspection
- gdb, gstack, gcore, crash
- [proc/$pid/*
- |sof, nodeset (from clustershell package)
- strace, Itrace
B Comm inspections
- netstat, Isof, ss
- tcpdump (iptables to reproduce packet loss)
B Sources inspection
- emacs, cscope-mode (or grep:), vi/ cscope, or the equivalent ...)
- git (blame)
- Man pages
- Slurm mailing-list archive, SchedMD Bugzilla
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Methodology and tools

Aggregation of results

B Try to aggregate information when possible

- Clustershell (pdsh/dshback replacement) to parallelize the processing of nodes
traces and aggregate results
= Need to perform the right « clush ... \] sed 's/xxxxx/xxxxx/" ...» to anonymize the
outputs and get the general trend to discriminate the most suspicious nodes
= Slurm would gain in having stronger log format conventions

- clustack to acquire aggregated information of gstack outputs
= In-house dev based on clustershell python API
= Useful to read multithreaded apps gstack outputs with large outputs
- With hundreds of threads for example...
= Parallel execution support to aggregate among multiple nodes
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Methodology and tools

Aggregation of results

B clustack example

[root@intiO ~] # clustack -bar pgrep:slurmctld

Thread 1:

H#3 OXevvevreeiiine in main ()

2722 0) U in _slurmctld_background ()

#L OX.oeveeeee in sleep () from /lib64/libc.s0.6

E- 0 J0) G in nanosleep () from /lib64/libc.s0.6

Thread 6:

-0 0)7 U in clone () from /lib64/libc.s0.6

£ 0 G in start_thread () from /lib64/libpthread.so.0
H#2 0X.oeveeeene in _decay_thread () from /usr/lib64/slurm/priority_multifac
E- N 0) U in sleep () from /lib64/libc.s0.6

E: 0 J0) G in nanosleep () from /lib64/libc.s0.6

[root@intio ~] #

[hautreux@inti50 ~]$ srun -n 700 sinfo >/dev/null
[hautreux@inti50 ~]$

[root@intiO ~] # clustack -bar pgrep:slurmctid
Thread [2-37,39-84,87-123,125-137,139-153,155,165-175]:

#6 OX..oveeeee in clone () from /lib64/libc.so0.6

#5 0Xevveeeeeeene in start_thread () from /lib64/libpthread.so.0
#4 OXevveeeeeiee in _service_connection ()

#3 0Xevveeeeeeene in slurm_receive_msg ()

H#2 OX.vveeeeien in _slurm_msg_recvfrom_timeout ()

#L OXevveeeeeee in _slurm_recv_timeout ()

#0 OX.evveeeee in poll () from /lib64/libc.so0.6

Thread [38,85-86,124,138,154]:

#8 OXevveveeeeene in clone () from /lib64/libc.so0.6

oA 0) U in start_thread () from /lib64/libpthread.so.0
#6 OXevvveeeeeeee in _service_connection ()

#5 0X.vveeeeee in slurmctld_req ()

275 0) GO in _slurm_rpc_dump_nodes ()

#3 OXevreeeeei in slurm_send_node_msg ()

H#2 OXevveeeeeenne in _slurm_msg_sendto_timeout ()

#1 OXevvereeeeen in _slurm_send_timeout ()

#0 OXevveeeeeeee in poll () from /lib64/libc.so0.6

Thread 1:

#3 OXevveeeeeee in main ()

#2 OXevveeeeeien in _slurmctld_background ()

2N 0) GO in sleep () from /lib64/libc.so0.6

#0 OXevveeeeeieee in nanosleep () from /lib64/libc.s0.6

Thread 160:

#A4 OX.eveeeeen in clone () from /lib64/libc.so0.6

227 0) GO in start_thread () from /lib64/libpthread.so.0
H2 OXevveeeeee in _decay_thread () from /usr/lib64/slurm/priority_multifactor.so
#1 0Xevveeeeeeee in sleep () from /lib64/libc.so0.6

#0 OXevveeeeeiene in nanosleep () from /lib64/libc.s0.6

[foot@inti0 ~] #
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Slurm support on large machines

Case study 1

Fairshare logic is blocked

B October 28th, 2013, no more evolution of the fairshare priorities and account usages
- Everything else sounds correct

In priority_multifactor.c:1075

> ieqj i [* sleep for calc_period secs */
Seems to .be a «. MISSINg feature scenario » tm.tm_sec += calc._period;
- Get core files using « gcore $(pgrep slurmctld) » tm.tm_isdst = -1;

next_time = mktime(&tm);

= Should be sufficient for such a class of problem | sleep((next_time-start_time));

- Restart the controller, everything is good again, great ! [T e

- Start to look at the traces svNopsIS.
= The decay thread seems to work but is sleeping Anclude SIS0 N  ianed int de).
= Look at the code and check the variables nsignedintSieeplinsigned int secones)

(gdb) t5

[Switching to thread 5 (Thread 0x2b996¢202700 (LWP 8339))]#0 0x00000031bc0ab15d in nanosleep () from /lib64/libc.s0.6
(gdb) bt

#0 0x00000031bc0abl15d in nanosleep () from /lib64/libc.so0.6

0000001 0x00000031bcOaafdO in sleep () from /lib64/libc.so0.6

0000002 0x00002b9898307486 in _decay_thread (no_data=<value optimized out>) at priority_multifactor.c:1075
0000003 0x00000031bcc077f1 in start_thread () from /lib64/libpthread.so.0

0000004 0x00000031bc0e5ccd in clone () from /lib64/libc.so.6

(gdb) select 2

(gdb) print start_time

$2 = 1351386075

(gdb) print (unsigned int) next_time - start_time

$1 = 4294963996

(gdb)
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Slurm support on large machines

— Case study 1

Fairshare logic is blocked

B 4294963996 seconds, quite a long sleep ! (>130 years)
- We just need to exercise more patience, it would eventually work :-)

B 1351386075 (start_time) is an interesting date (in epoch...)
- date -u -d @1351386075
Sun Oct 28 01:01:15 UTC 2012
- This corresponds to the shift time for daylight saving time

B The good news is that we have a year to find the bug...
- S0 we ask for support ...
- And the bug is known and corrected !!!
Bugzilla 175, commit 1d90cd35ff6621717911edc752af014a32360934
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Slurm support on large machines

Case study 2

Slurmctld periodically unresponsive

B Users complain about periodic failure of their submissions
- Admins confirm that even sinfo-like commands time out

B Seems to be a performance issue
- Collect slurmctld info for that

= top confirms the high load of the process

= clustack shows a high number of threads processing rpc_dump_nodes

= |Isof provides the name of the nodes involved in RPCs

= Looking at the jobs versus the involved nodes, a user is highlighted

= Looking at the user's app behavior, a bad usage of slurm is found
- A large number of concurrent squeue calls to get local task information

(one per task, thousands of tasks, several sequential steps per job...)

- A « distributed denial of service » !l

= The user is contacted and the app corrected

B Just the consequences of doing a small mistake at scale...
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Slurm support on large machines

Case study 2

Slurmctld periodically unresponsive

B Details
$ top
64829 slurm 20 016.4g 108m 6124 S 166.0 0.2 4205:24 slurmctld
$ clustack

(0)' ST in clone () from /lib64/libc.so0.6

(0) CRPRTRR in start_thread () from /lib64/libpthread.so.0

(0) SO in _service_connection ()

L0 GO in slurmctld_req ()

() ST in _slurm_rpc_dump_nodes ()

) GO in lock_slurmctld ()

(0) ST in _wr_wrlock ()

(0)' P in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0

$ Isof -p 64829 | grep ESTABLISHED | sed 'sl.*\->\([a-z0-9]*)\..*/\1/' | nodeset -f

curie[0,71,1825-1827,1831,1837,1872-
1873,1938,2280,2994,2996,2998,3002,3304,3312,3506,3721,3931,3945,4293,4299,4307,4508,4522,4560,4562,4568,4574,4653,4657,4663,4665,5118,
5121-5123,5212,5218,5222,5224,5288,5391,5395,5397,5399,5403,5554,5558,5561,5563,5565,5642,5645-5646,5651,5655,5932,5934,5936,6402,6408]
$ squeue -w curiel....]

éé.ssh
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

B Users/admins complains about large MPI jobs finishing correctly but staying allocated
until their time limit
- Large waste of resources for users not specifying correcly their execution time

B Seems to be a deadlock issue at first
- But not so easy !
- Only the srun command is present while the job is blocked !
= All the slurmstepds have already finished their execution
- Seems to be a deadlock-like scenario in distributed environment
= SO maybe a comm issue too...

B We have a systematic reproducer !!! it only requires 4700 nodes ....
- Need to do step by step analysis when debugging slots are allowed....
= 1 hour every 2 months during maintenance period, great :-)
- It shows that srun hangs waiting for stdout,err messages from a few hundreds nodes
= But not necessary the same distribution of nodes over the different runs...
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Slurm support on large machines

— Case study 3

Large jobs hang after end of execution until time limit

B Interesting additional inputs !
- The issue only appears when the OpenMPI app is launched directly using srun —
resv-port
= |t does not appear when salloc/mpirun is used instead....

B It's time to get information from the system, we only have one hour....
- over the 4700+1 (login) nodes involved
= Start a tcpdump collection
= Start a « ss » periodic collection
- Launch the app and walit for its workload termination
- As soon as it finishes
= Get core files from the hung srun process(es)
= Get its Isof result and identify the involved failed nodes
- Connect to one of the failed nodes for live analysis
= Look at network live statistics to see what happens
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

The srun stack :

[root@curie52 ~] # gstack 37967

Thread 3 (Thread 0x2b30373cb700 (LWP 37969)):

#0 0x00000035b7a0f2a5 in sigwait () from /lib64/libpthread.so.0

#1 0x00000000004237ac in _srun_signal_mgr ()

#2 0x00000035b7a07851 in start_thread () from /lib64/libpthread.so.0
#3 0x00000035b6ee767d in clone () from /lib64/libc.so0.6

Thread 2 (Thread 0x2b30375¢d700 (LWP 37972)):

#0 0x00000035b6eddfc3 in poll () from /lib64/libc.so0.6

#1 0x000000000042b605 in eio_handle_mainloop ()

#2 0x00000000004e81a2 in _io_thr_internal ()

#3 0x00000035b7a07851 in start_thread () from /lib64/libpthread.so.0
#4 0x00000035b6ee767d in clone () from /lib64/libc.s0.6

Thread 1 (Thread 0x2b3031d88040 (LWP 37967)):

#0 0x00000035b7a080ad in pthread_join () from /lib64/libpthread.so.0
#1 0x00000000004e7f6d in client_io_handler_finish ()

#2 0x00000000004e8fc2 in slurm_step_launch_wait_finish ()

#3 0x00000000004222c2 in srun ()

#4 0x00000035b6elecdd in __libc_start main () from /lib64/libc.s0.6
#5 0x0000000000421129 in _start ()

[root@curie52 ~] #

The involved compute nodes :

[myuser@curie52 heavyp2p]$ Isof -p 37967 | grep ESTABLISHED | sed 's/.*\->\([a-z0-9]*)\..*\1/' | nodeset -f
Curie[1675,1680,1843,1862,1871,1882,1891,1898,....,5793,.....,6245,6273,6367]

[myuser@curie52 heavyp2p]$ Isof -p 37967 | grep ESTABLISHED | sed 's/.*\->\([a-z0-9]*)\..*/\1/' | nodeset -c
220

[myuser@curie52 heavyp2p]$
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

On one of the involved node, a large number of closing/half-closed sockets :

[myuser@curie5793 ~]$ ss | awk '{print $1}' | sort | uniq -c
1153 CLOSING
6 ESTAB
675 FIN-WAIT-1
152 LAST-ACK
1 State
[myuser@curie5793 ~]$ cat /proc/net/sockstat
sockets: used 475
TCP: inuse 1996 orphan 1980 tw 416 alloc 2001 mem 1309
UDP: inuse 14 mem 5
[myuser@curie5793 ~]$

After a while, all the orphan sockets are purged by the kernel :

[myuser@curie5793 ~]$ cat Iproc/net/sockstat
sockets: used 476

TCP: inuse 17 orphan 0 tw 0 alloc 22 mem 1
UDP: inuse 14 mem 5

[myuser@curie5793 ~]$

The orphan sockets are mostly due to the OpenMPI runtime, when used in direct slurm execution, that opens a large nhumber of
TCP sockets in the case of the heavyp2p benchmark and lets the kernel close them at exit :

[myuser@curie5793 ~]$ ss | awk ‘{print $NF}' | sed 's/[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*/x\.x\.x\.x\./g" | sort | uniq -c | sort -n | tail-n 1
1693 x.x.X.x.:14304

[myuser@curie5793 ~]$ ss | awk {print $(NF-1)}' | sed 's/[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*/x\.x\.x\.x\./g" | sort | uniq -c | sort -n | tail -n 1
286 x.X.x.X.:14304

[myuser@curie5793 ~]$ grep MpiParams /etc/slurm/slurm.conf

MpiParams=ports=12000-16999

[myuser@curie5793 ~]$
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

But slurmstepd also lets the kernel manage the termination of 10 redirection
-> s0 10 redirection sockets compete in the kernel with MPI apps sockets after processes exits.

Orphan sockets are managed in a special manner in the kernel :
[root@curie52 ~] # cat Iprocisysinetlipv4ltcp_orphan_retries

0

[root@curie52 ~] #

-> 0 means that you'll have 8 retries exponentially spread around 50s
-> sockets closed due to processes exits at the same time will have timely adjusted retries

-> we may have periodic burst of retries resulting in packet losses...
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

Looking at the tcpdump outputs, we see that this is the right direction :
> On the srun node, we can see that we do not receive the message 3147758607:3147758617 and ask for its retransmission

15:39:05.599940 IP (tos 0x0, ttl 62, id 24308, offset 0O, flags [DF], proto TCP (6), length 60)

curie5793.57268 > curie52.55731: Flags [S], cksum 0x84d3 (correct), seq 3147758580, win 14600, options [...], length 0
15:39:05.600052 IP (tos 0x0, ttl 64, id 6170, offset 0, flags [none], proto TCP (6), length 60)

curie52.55731 > curie5793.57268: Flags [S.], cksum 0x211a (correct), seq 2091871385, ack 3147758581, win 65160, ..., length 0
15:39:05.600329 IP (tos 0x0, ttl 62, id 24309, offset 0, flags [DF], proto TCP (6), length 52)

curie5793.57268 > curie52.55731: Flags [.], cksum 0x4e00 (correct), seq 3147758581, ack 2091871386, win 115, options [...], length O
15:39:05.600440 IP (tos 0xO0, ttl 62, id 24310, offset 0, flags [DF], proto TCP (6), length 78)

curie5793.57268 > curie52.55731: Flags [P.], cksum 0Ox6b71 (correct), seq 3147758581:3147758607, ack 2091871386, ..., length 26
15:39:05.600455 IP (tos 0x0, ttl 64, id 6171, offset O, flags [none], proto TCP (6), length 52)

curie52.55731 > curie5793.57268: Flags [.], cksum 0x4e39 (correct), seq 2091871386, ack 3147758607, win 32, options [...], length O
15:44:39.147855 IP (tos 0x0, ttl 62, id 24317, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [FP.], cksum Oxbb68 (correct), seq 3147758617:3147758627, ack 2091871386, ..., length 10
15:44:39.147869 IP (tos 0x0, ttl 64, id 6178, offset 0, flags [none], proto TCP (6), length 64)

curie52.55731 > curie5793.57268: Flags [.], cksum 0x265a (correct), seq 2091871386, ack 3147758607, win 32, options [...], length O
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Slurm support on large machines

Case study 3

Large jobs hang after end of execution until time limit

Looking at the tcpdump outputs, we see that this is the right direction : (continued...)

> On the compute node, we can see that we sent multiple times the 3147758607:3147758617 segment, even receive the retransmission
request, but never succeed in sending it until the discard of the socket by the kernel

15:44:30.952740 IP (tos 0xO, ttl 64, id 24311, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:31.157547 IP (tos 0xO, ttl 64, id 24312, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:31.577216 IP (tos 0x0, ttl 64, id 24313, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:32.417194 IP (tos 0x0, ttl 64, id 24314, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:34.097238 IP (tos 0x0, ttl 64, id 24315, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:37.457210 IP (tos 0x0, ttl 64, id 24316, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:39.147555 IP (tos 0x0, ttl 64, id 24317, offset O, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [FP.], cksum ..., seq 3147758617:3147758627, ack 2091871386, win 115, ..., length 10
15:44:39.147651 IP (tos 0x0, ttl 62, id 6178, offset 0, flags [none], proto TCP (6), length 64)

curie52.55731 > curie5793.57268: Flags [.], cksum ..., seq 2091871386, ack 3147758607, win 32, ..., length O
15:44:44.177196 IP (tos 0x0, ttl 64, id 24318, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:44:57.617207 IP (tos 0xO, ttl 64, id 24319, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
15:45:24.497212 IP (tos 0xO, ttl 64, id 24320, offset 0, flags [DF], proto TCP (6), length 62)

curie5793.57268 > curie52.55731: Flags [P.], cksum ..., seq 3147758607:3147758617, ack 2091871386, win 115, ..., length 10
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Slurm support on large machines

— Case study 3

Large jobs hang after end of execution until time limit

B Conclusions...

- The problem only appears with « srun --resv-ports »
= this mode seems to let the OpenMPI runtime create a lot of TCP sockets for
processes having a large numbers of connected peers without closing them

properly
- Slurmstepd does not close properly its 10 redirection sockets either

- OpenMPI apps and slurmstepd(s) then compete during the bursts of orphan sockets
closures
= Not a big deal for the MPI job, it is already finished
= But that may block the srun and lead to our issue
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Slurm support on large machines

— Case study 3

Large jobs hang after end of execution until time limit

B So?
- SchedMD Bugzilla #149

- Work-around by SchedMD adding a timeout in srun to abort the 10 redirection
instead of waiting indefinitely

- Keepalive addition by SchedMD in the comm logic to avoid this kind of issues in
other components exchanges in the future

- Thoughts about refactoring the 10-redirection protocol to properly manage the

sockets closures and not be worried by competing orphan sockets
= Implementing a shutdown logic in the exchanges
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Thank you for your attention

Questions ?
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