

Introducing Energy based fair-share scheduling

23/09/14

Yiannis Georgiou

David Glesser

Krzysztof Rzadca

Denis Trystram

Existing works

Energetic Fairshare

Existing works

• Energetic Fairshare

How to split a cake?

© Bull, 2014 4

How to split a cake if it is destined for kids?

I want more chocolate!

I want the flower and chocolate!

© Bull, 2014

Fairsharing is sharing limited resources among consumers

Can involve philosophy, sociology, game theory...

Hard to define

Existing works

Energetic Fairshare

⇒ How fairshare is done within Slurm?

- A counter per user accumulates usage of CPUs among time
- Counters decay in time (or reseted)
- Users can be weitghed (some can use more resources than others)
- Counters are normalized and then contribute to the priority score of each job

Called max-min fairness in litterrature

- ⇒ Implementation in Slurm
- Within the priority/multifactor plugin
- Counters are stored in memory and saved in binary files
- A thread does the decaying and increases counters (even for running jobs)

- Part of the slurm protocol (so present in core structures and functions)
- sshare and sprio
 - (to see counters, user weigths, job priority...)

© Bull, 2014

- Most Batch schedulers have the same algorithm
 - Ordered list scheduling + backfilling
 - Use fairshare counters (among others) to sort job list

Transform CPU*Time to

Processor Equivalent * time

- PBS Pro: PE = distance to a standard job
- Maui/Moab: PE = max(jobCPU/max(CPU);

jobRAM/max(RAM); ...)

Multi Resource Fairness: Problems and Challenges by Klusaček et al. (JSSPP 2014)

- A good review
 - Processor Equivalent-like
 - Totally different algorithms
- They define a Processor Equivalent with more features

Existing works

Energetic Fairshare

⇒ Energetic fairshare

- Share the resource that costs the most
 - Energy is a significant part of the annual cost

- Incite users to improve energy efficiency
 - By delaying jobs of non-green users

How we do energetic fairshare?

How we do energetic fairshare?

- Power and Energy is collected per job
 - Thanks to acct_gather_energy plugin
- We use the same algorithm
 - $-\int POWER.dt=Energy$
 - s/CPU/Power/g

⇒ How energetic fairshare is done within Slurm?

- A counter per user accumulates usage of CPUs among time

 Power
- Counters decay in time (or reseted)
- Users can be weitghed (some can use more resources than others)
- Counters are normalized and then contribute to the priority score of each job

We validate our algorithm

- Emulated environement
 - --multiple-slurmd ♥
 - Jobs execute sleep
 - Power consumption is injected
- Real Slurm
- Light-ESP workload

- Work as intended
 - Green users are prioritized

© Bull, 2014

Existing works

• Energetic Fairshare

- More experiments
 - On longer and real workload

- Test heterogeneity
 - Multi-resource jobs (ex: GPU + CPU jobs)
 - CPUs have different power consumptions

- Are we multi-resource aware?
 - Every component consumes energy
 - If we can measure energy for each component indepently, we are multi-resource aware!

© Bull, 2014 19

Architect of an Open World™

- FS on consumed resources Vs. FS on reserved resources
- bien faire attention, lalgo de FS doit punir l'user pour une raison que l'user controle, par pour une decision du systeme
- multiresource fairness is hard: users do not have the same need (I want a lot of RAM, I want CPU, I want GPU and CPU...) => envt-free?
- Ne pas dire qu'on est bcp multiresource aware, dire que c un effet de bord.

© Bull, 2014 2