
1© Bull, 2012

23/09/14 Yiannis Georgiou
David Glesser
Krzysztof Rzadca
Denis Trystram

Introducing Energy based
fair-share scheduling

2© Bull, 2012

 Introduction

 Existing works

 Energetic Fairshare

 Future works

3© Bull, 2012

 Introduction

 Existing works

 Energetic Fairshare

 Future works

4© Bull, 2014

Introduction to fairshare

 How to split a cake?

5© Bull, 2014

Introduction to fairshare

 How to split a cake if it is destined for kids?

I want more chocolate!

I want the flower and
chocolate!

6© Bull, 2014

Introduction to fairshare

 Fairsharing is sharing limited resources among
consumers

 Can involve philosophy, sociology, game theory...

 Hard to define

7© Bull, 2012

 Introduction

 Existing works

 Energetic Fairshare

 Future works

8© Bull, 2014

Existing work – in RJMS

⇒ How fairshare is done within Slurm?

 A counter per user accumulates usage of CPUs
among time

 Counters decay in time (or reseted)

 Users can be weitghed (some can use more
resources than others)

 Counters are normalized and then contribute to
the priority score of each job

Called max-min fairness in litterrature

9© Bull, 2014

Existing work – in RJMS

⇒ Implementation in Slurm

 Within the priority/multifactor plugin

 Counters are stored in memory and saved in
binary files

 A thread does the decaying and increases
counters (even for running jobs)

 Part of the slurm protocol (so present in core
structures and functions)

 sshare and sprio

– (to see counters, user weigths, job priority...)

10© Bull, 2014

Existing work – in RJMS

 Most Batch schedulers have the same algorithm

– Ordered list scheduling + backfilling

– Use fairshare counters (among others) to sort job list

 Transform CPU*Time to

 Processor Equivalent * time

– PBS Pro: PE = distance to a standard job

– Maui/Moab: PE = max(jobCPU/max(CPU);

 jobRAM/max(RAM); ...)

11© Bull, 2014

Existing work – Research

Multi Resource Fairness: Problems and Challenges
by Klusaček et al. (JSSPP 2014)

 A good review

– Processor Equivalent-like

– Totally different algorithms

 They define a Processor Equivalent with more
features

12© Bull, 2012

 Introduction

 Existing works

 Energetic Fairshare

 Future works

13© Bull, 2014

Motivations

⇒ Energetic fairshare

 Share the resource that costs the most

– Energy is a significant part of the annual cost

 Incite users to improve energy efficiency

– By delaying jobs of non-green users

14© Bull, 2014

How we do energetic fairshare?

How we do energetic fairshare?

15© Bull, 2014

How we do energetic fairshare?

 Power and Energy is collected per job

– Thanks to acct_gather_energy plugin

 We use the same algorithm

–

– s/CPU/Power/g

∫POWER .dt=Energy

16© Bull, 2014

How energetic fairshare is done within Slurm?

⇒ How energetic fairshare is done within Slurm?

 A counter per user accumulates usage of CPUs
among time

 Counters decay in time (or reseted)

 Users can be weitghed (some can use more
resources than others)

 Counters are normalized and then contribute to
the priority score of each job

Power

17© Bull, 2014

Validation through experiments

 We validate our algorithm

– Emulated environement

• --multiple-slurmd ❤

• Jobs execute sleep

• Power consumption is injected

– Real Slurm

– Light-ESP workload

 Work as intended

– Green users are prioritized

18© Bull, 2012

 Introduction

 Existing works

 Energetic Fairshare

 Future works

19© Bull, 2014

Future works

 More experiments

– On longer and real workload

 Test heterogeneity

– Multi-resource jobs (ex: GPU + CPU jobs)

– CPUs have different power consumptions

 Are we multi-resource aware?

– Every component consumes energy

– If we can measure energy for each component indepently,
we are multi-resource aware!

20© Bull, 2012

21© Bull, 2014

TODODOODODODODOD

 FS on consumed resources Vs. FS on reserved
resources

 bien faire attention, lalgo de FS doit punir l'user
pour une raison que l'user controle, par pour une
decision du systeme

 multiresource fairness is hard: users do not have
the same need (I want a lot of RAM, I want CPU, I
want GPU and CPU...) => envt-free ?

 Ne pas dire qu'on est bcp multiresource aware,dire
que c un effet de bord.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

