

Fair Tree
Fairshare Algorithm for Slurm

Ryan Cox and Levi Morrison
Brigham Young University

Slurm User Group Meeting – September 24, 2014 – Lugano, Switzerland

Outline

● Introduction to job prioritization
● BYU's setup
● Issues with existing fairshare algorithms
● Fair Tree
● Fairshare=parent on accounts
● Appendix

Job Prioritization

● Job Priority can include different components:

– Age

– JobSize

– Partition

– QOS

– Fairshare - this is what we will discuss
● Job Priority = sum(ComponentWeight * ComponentFactor)

– Weight is an integer

– Factor is between 0.0 and 1.0
● Job Priority = 1000 * 0.34 + 5000 * 0.12 + 2000 * 0.54 …...

Fairshare Factor

● Usage and Shares are the two components of Fairshare Factor

● Raw Shares are assigned to each association by an admin

– “Shares” is Raw Shares when normalized to 0.0 .. 1.0

– Similar to slices of a pie

– Represents the part of the system that is “yours”

● “Usage” is a value between 0.0 and 1.0 that represents your
proportional usage of the system

Basic premise of fairshare:

If Shares == Usage, you have hit your “fairshare target”

Fairshare Equation

Fairshare Factor = 2-Usage/Shares

 or

F = 2-U/S

● Result is between 0.0 and 1.0
● When Usage increases, F decreases
● When Usage decreases, F increases

Fairshare Equation

BYU's Setup

● Each professor has a Slurm account

– Has account coordinator status for that account

– BYU doesn't charge $$$ for usage

– Accounts are treated equally (Shares are the same)

● Students and collaborators are users in a professor's account

– Users are treated equally (Shares are the same, unless account
coordinator changes them)

root

AProf1 AProf2

uProf1 uStudent3 uProf2 uCollab78 uPhd17

Accounts

Users

Our Definition of “Fair”

● If accounts A and B are siblings and A has a higher
fairshare factor than B, all children of A will have
higher fairshare factors than all children of B

– True for all sibling associations at all levels

Disclaimer

● We will discuss BYU's use case and how to support it

– It may also apply to many other use cases
● We are building on the hard work of others

● We identified some issues with existing algorithms but our work
would not have been possible without the other algorithms

New Fairshare Algorithm

We wrote a new fairshare
algorithm.

Why?

Account with 35% usage had
higher priority than accounts with

only 10% usage

The Problem

Fairshare Factor = 2-Usage/Shares

 or

F = 2-U/S

Fairshare Equation

The following slides show graphs of this equation
with various U and S values

Fairshare 3D Graph

Fairshare Graph

Fairshare Graph Zoomed

● As Usage increases, fairshare decreases
● As Shares decreases, the point at which the line visually hits the x-axis is earlier and earlier

● At some point it will also become zero in floating point

Actual Fairshare Graph

Actual Fairshare Zoomed

Actual Fairshare More Zoomed

● The Shares values were seen in production at BYU
● 150 accounts with either 10 or 50 users in an account
● Even if the Shares value is the same, the Fairshare value may be the same (zero) even

with a large disparity in Usage
● Since F was zero beyond a certain point, large disparities in usage resulted in same F value

Dampening Factor

● Added in 14.03
● 2^-((Usage/Shares)/Damp)

– Damp is a positive integer (slurm.conf)

● Great idea
● Isn't a complete solution

– Small values may still be too small

– Requires manual guess and check

● Can be replaced by linear interpolation
– Ticket-Based can use this instead of MAX()

– See Appendix

Problem With Shares Calculation

● Normalized Shares equation (the “S” in 2^-(U/S)) for all current algorithms:

S = (RawSharesuser / RawSharessiblings) * 1/4 *

 (RawSharesaccount / RawSharessibling-accounts) * 1/10 *

 (RawSharesparent / RawSharesparent-siblings) * … 1/20 * ...

 1/4 * 1/10 * 1/20 = 1/800 = 0.00125

● Assume sibling associations have the same Raw Shares, tree has 2 levels:

Equivalent to:

S = (1 / number of users in account) * constant

● See appendix for demonstration of equivalence

Problem With Shares Calculation

root

AcctA AcctB

uB0uA1 uA2 uB1 uB2 uB3 uB4 uB5 uB6 uB7 uB8 uB9

S = 1/2 = 0.5 S = 1/10 = 0.1

● The S values are multiplied by the same constant, thus the constant can be discarded for
comparison purposes

● The S value ensures that AcctA has a huge advantage solely because it has fewer users
● End-users should attempt to get team members fired or preferably reassigned to a competing

research group so that their own S increases while their competitors' S values decrease
● Problem applies to more complicated scenarios but is harder to model

Usage Effective

● Usage Effective (the U in 2^-(U/S)) =

 UAchild+((UEparent-UAchild)*Schild/Sall_siblings)

● Assuming two levels in the tree, 2^-(U/S) expands to:

● Has some unpleasant side effects that we consider bugs

– (Have 20 minutes and a whiteboard? Let's talk!)

Other Algorithms

● Ticket-Based
– Depends on queue state

● Hard to explain to users

– T = Tparent * S * F / SUM(S*F)active_siblings

● Similar issues to Norm Shares equation because (S * F /
SUM(S*F)active_siblings) depends on the number of active users
in an account

● Depth Oblivious
– Very complex math

● Hard to explain to users and admins
● Hard to evaluate its fairness

– Many opportunities for floating point precision issues

An Example

Timeshare on a Spaceship

● The Beatles and Elvis split the cost of a spaceship and crew

● One passenger spaceship

● Elvis pays 50%

● Beatles pay 50%

– Each member pays 25% of the Beatles' 50% (equals 1/8 of the total)

– If a band member isn't waiting to use the spaceship, other band
members can take a ride

Accounts Users

How well does Slurm
perform in this scenario?

 Account User Norm Shares

--------------- ---------- ------------

root 0.000000

 beatles 0.500000

 beatles harrison 0.125000

 beatles lennon 0.125000

 beatles mccartney 0.125000

 beatles starr 0.125000

 elvis 0.500000

 elvis elvis 0.500000

Simulated using the following account hierarchy:

What actually happens?

Simulation Rules

● Elvis always has work queued
● n Beatles always have worked queued
● The other Beatles do not queue any jobs
● Only one core available
● Usage and fairshare calculations run in

between each job
● The following pie charts show the percentage of

the system that each account used

4 Beatles vs Elvis

2 Beatles vs Elvis

3 Beatles vs Elvis

1 Beatle vs Elvis

Traditional Multifactor

Beatles

Elvis

4 Beatles vs Elvis

2 Beatles vs Elvis

3 Beatles vs Elvis

1 Beatle vs Elvis

Ticket-Based

Beatles

Elvis

4 Beatles vs Elvis

2 Beatles vs Elvis

3 Beatles vs Elvis

1 Beatle vs Elvis

Depth Oblivious

Beatles

Elvis

4 Beatles vs Elvis

2 Beatles vs Elvis

3 Beatles vs Elvis

1 Beatle vs Elvis

Fair Tree

Beatles

Elvis

Goals of Fair Tree

● If accounts A and B are siblings and A has a higher
fairshare factor than B, all children of A will have
higher fairshare factors than all children of B

– True for all sibling associations at all levels
● Eliminate problems due to floating point precision loss

● sshare and debug support

Trees

● Similar idea to binary search tree:

● Nodes are sorted

● In-order traversal results in a sorted list

Fairshare Calculation

● Level Fairshare = S / U

● S = RawSharesself / RawSharesself+siblings

● U = RawUsageself / RawUsageself+siblings

● Range: [0, infinity]

● if U == S then LF = 1.0

● Replaces 2^-(U/S)

● Only used for sorting

Tree Traversal

● Create “rooted plane tree”

● Traversal function, starting at root:

– Calculate Level Fairshare for each child (S/U)

– Sort children by Level Fairshare from highest to lowest

– Visit the children in order
● If account, recurse with account as new root
● If user, assign a final fairshare factor based on ranking

● Final fairshare factor is: rank-- / user_count

– rank is initialized to user_count

– Ties are allowed

Traversal in the
Fair Tree Algorithm for Slurm

= visit association

= calculate level fairshare

= sort siblings

= calculate final fairshare for useru

Fair Tree: Traversal

Important Notes: Example level fairshare values are completely unrealistic. Final fairshare value not shown.

root

A1 A2

u11 u12 u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

root

A1 A2

u11 u12 u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Visit association

root

A1 A2

u11 u12 u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4) A2 (.7)

u11 u12 u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4) A2 (.7)

u11 u12 u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 u22 A23

u231 u232 u233

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3) u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3) u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Final fairshare value = rank-- / user_count

1.0 = 7 / 7

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 u232 u233

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 (.4) u232 (.3) u233 (.9)

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 (.4) u232 (.3) u233 (.9)

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u231 (.4) u232 (.3)

Fair Tree: Traversal

u233 (.9)

Final fairshare value = rank-- / user_count

0.857 = 6 / 7

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Final fairshare value = rank-- / user_count

0.714 = 5 / 7

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Final fairshare value = rank-- / user_count

0.571 = 4 / 7

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

u21 (.3)

Final fairshare value = rank-- / user_count

0.429 = 3 / 7

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u11 u12u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 (.6) u12 (.7)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Calculate level fairshare

root

A1 (.4)A2 (.7)

u11 (.6) u12 (.7)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Sort by level fairshare

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Final fairshare value = rank-- / user_count

0.286 = 2 / 7

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Visit association

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal

Final fairshare value = rank-- / user_count

0.143 = 1 / 7

root

A1 (.4)A2 (.7)

u12 (.7) u11 (.6)u21 (.3)u22 (.7) A23 (.5)

u233 (.9) u231 (.4) u232 (.3)

Fair Tree: Traversal Complete

Traversal Complete!
All final fairshare values were assigned

Ranking

● Users are ranked as they are found

– Ties are allowed (e.g. 8,8,8,5,4) if Level Fairshare is
equal

– See the appendix for details of tie handling
● Avoids precision loss

sshare

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

Debug

slurmctld: Fair Tree fairshare algorithm, starting at root:
slurmctld: elvis (elvis): 1.11010830324909747294
slurmctld: elvis (elvis): 1.00000000000000000000
slurmctld: beatles (beatles): 0.90976331360946745562
slurmctld: mccartney (beatles): 4.56756756756756756785
slurmctld: lennon (beatles): 1.65686274509803921568
slurmctld: starr (beatles): 0.71610169491525423724
slurmctld: harrison (beatles): 0.56146179401993355479

● Live view of depth-first traversal

● Users are printed in order of final fairshare factor

● Number shown is Level FS

Easy to Try

● slurm.conf:
– PriorityFlags=FAIR_TREE

● scontrol reconfigure
– Wait for next iteration ($PriorityCalcPeriod minutes)

● Available starting in 14.11.0pre6

Advantages

● Uses entry-level computer science (ordered tree)
● Uses entry-level math

– S/U is simple

– LevelFS < LevelFS is simple

● Precision loss issues extremely unlikely
● Handles unbalanced trees
● Demonstrably fair

Possible Concerns

● A user can use all the account's shares if no one else is running

– (Great!)

– No algorithm can prevent this

– User limits (set by admin or account coordinator)

● Tiny user in a very active group has trouble running

– User will have highest fairshare factor in account but low
compared to other accounts

– Optional QOS w/UsageFactor=20 and Priority=100000000

● User runs quickly but pays heavily
– Secondary account with tight limits

● Strictness of hierarchical prioritization

– Fairshare=parent on accounts

– Fuzzy matching (see “Future Development”)

Fairshare=parent modifications
(all algorithms)

Fairshare=parent

● Fairshare=parent behavior on an account was previously
undefined

● It is now defined:

If Fairshare=parent is set on an account, that account's
children will be effectively reparented for fairshare
calculations to the first ancestor that is not Fairshare=parent.

● The behavior of limits is unchanged

● Available in 14.11 for all algorithms

root

Engineering PhysMath

ElecAndComp ME Physics CS Chemistry

DrCS1 DrCS2 DrChem1 DrChem2ElecE DrME1 DrME2

DrEE1

CompE

u1

DrCE1 DrCE2

u3 u5 u6u2 u4 u7

u8 u9 ua ub uc ud ue

DrPhys1

uf ug uh ui uj uk ul um

Fairshare=parent

root

Engineering PhysMath

ElecAndComp ME Physics CS Chemistry

DrCS1 DrCS2 DrChem1 DrChem2ElecE DrME1 DrME2

DrEE1

CompE

u1

DrCE1 DrCE2

u3 u5 u6u2 u4 u7

u8 u9 ua ub uc ud ue

DrPhys1

uf ug uh ui uj uk ul um

Fairshare=parent

root

DrCS1 DrCS2 DrChem1 DrChem2DrME1 DrME2

DrEE1

u1

DrCE1 DrCE2

u3 u5 u6u2 u4 u7

u8 u9 ua ub uc ud ue

DrPhys1

uf ug uh ui uj uk ul um

Fairshare=parent

root

A1 A2

u11 u12 u21 ACollab A23

u221 u222 u231 u232 u233

Fairshare=parent

root

A1 A2

u11 u12 u21 A23

u221 u222 u231 u232 u233

Example:
ACollab is the only association with Fairshare=parent

ACollab

Fairshare=parent

root

A1 A2

u11 u12 u21 A23

u221 u222 u231 u232 u233

Example:
ACollab effectively disappears

ACollab

Fairshare=parent

root

A1 A2

u11 u12 u21 A23

u221 u222 u231 u232 u233

Example:
u221 and u222 are reparented

Fairshare=parent

root

A1 A2

u11 u12 u21 A23

u221 u222 u231 u232 u233

The following are now siblings for purposes of fairshare calculations:
u21, u221, u222, A23

Fairshare=parent

root

A1 A2

u11 u12 u21 A23u221 u222

u231 u232 u233

The following are now siblings for purposes of fairshare calculations:
u21, u221, u222, A23

Fairshare=parent

Questions?

Appendix

Appendix Index

● More information
● Future Development
● Problems with Shares Calculation
● Linear Interpolation
● sshare example
● Tie Handling

More Information

● Until 14.11 is released, Fair Tree documentation is at:

– https://fsl.byu.edu/documentation/slurm/fair_tree.php
● Available in 14.11.0pre6

● Decay is orthogonal to fairshare, i.e. it still works fine

● Contact us if you have questions:

– ryan_cox@byu.edu

– levi_morrison@byu.edu

– slurm-dev list

https://fsl.byu.edu/documentation/slurm/fair_tree.php
mailto:ryan_cox@byu.edu
mailto:levi_morrison@byu.edu

Future Development

● Allow for less strictness
– Merge accounts based on configurable delta

● Allows reuse of tie handling. The comparison function
needs a very minor change

– LevelFSTieDelta=0.01,0.05,0.02
● Values are the epsilon value at increasing depths

– Either:
● a > b * (1 - delta) && a < b * (1 + delta)
● abs((a - b) < delta)

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) *

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) *

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

Example:

● The tree is no deeper than: root->account->user

● Assume sibling associations are treated equally (same Shares)

● Problem still applies for more complicated scenarios

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) *

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

● The tree is no deeper than: root->account->user

● Therefore:

S = (S
user

 / S
siblings

) * (S
account

 / S
sibling-accounts

)

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) *

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

● If each account is Shares=500

● S
account

 / S
sibling-accounts

 = 500 / (500 * count(accounts))

● S
account

 / S
sibling-accounts

 = 1 / count(accounts)

● This is a constant for all accounts

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) * constant

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

● S = (S
user

 / S
siblings

) * constant

● Since we are comparing... constants are thrown out:

● S = (S
user

 / S
siblings

)

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms:

S = (S
user

 / S
siblings

) * constant

 (S
account

 / S
sibling-accounts

) *

 (S
parent

 / S
parent-siblings

) * …

● If each user is Shares=100

● S = 100 / (100 * count(users_in_account))

● S = 1 / count(users_in_account)

Problems With Shares Calculation

● Normalized Shares equation for all current algorithms when accounts are
treated equally and users in an account are treated equally:

S
user

 = 1 / count(users_in_account) * constant

The problem still exists for other scenarios but is harder to model

Problems With Shares Calculation

root

AcctA AcctB

uB0uA1 uA2 uB1 uB2 uB3 uB4 uB5 uB6 uB7 uB8 uB9

S = 1/2 = 0.5 S = 1/10 = 0.1

● Shares are between 0.0 .. 1.0

● Map them to the range 0.1 .. 1.0

– Use linear interpolation (lerp)
● lerp(min, max, f) = min + f * (max – min)

– Has floating point issues
● lerp(min, max, f) = min * (1.0L - f) + max * f

– Shouldn't have floating point issues
● lerp(0.1, 1.0, 0.00001) = 0.100009

Linear Interpolation (lerp)

Linear Interpolation (lerp)

Usage Shares Fairshare (unmodified) Fairshare (lerp)
0.15 .2 0.59460355750136062447097629046766 0.68981706017270247755391460176000

0.15 .1 0.35355339059327384187980669594253 0.57855511864135993283170603107557

0.15 .02 0.00552427172801990291201024163570 0.41431890600793676033685580817334

0.15 .01 0.00003051757812500000000000000000 0.38524635476490996013063453085046

0.15 .002 0.00000000000000000000002646977960 0.36011325130027945195512403819826

0.15 .001 0.00000000000000000000000000000000 0.35684750329912502426078085848715

0.15 .0002 0.00000000000000000000000000000000 0.35421449328863424725827649397480

0.15 .0001 0.00000000000000000000000000000000 0.35388408479113951296806533930450

0.15 .00000000002 0.00000000000000000000000000000000 0.35355339065944120049999645216676

0.15 .00000000001 0.00000000000000000000000000000000 0.35355339062635748816239289471497

● Fairshare factor is multiplied by PriorityWeightFairshare, making the problem much worse
● If lerp() is implemented, add an option (-L?) to sshare:

● change Norm Shares → Lerp Shares

Unmodified vs lerp()

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

McCartney: Why do I have a lower fairshare factor than Elvis?

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

McCartney: Why do I have a lower fairshare factor than Elvis?

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

McCartney: Why do I have a lower fairshare factor than Elvis?

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

Answer: Compare the accounts' Level FS values

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

Answer: Compare the accounts' Level FS values

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

McCartney: How is Level FS calculated?

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

Answer: Norm Shares / Effectv Usage

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

sshare

*Note: Some sshare columns were cut for brevity in this presentation

 Account User Raw Shares Norm Shares Raw Usage Norm Usage Effectv Usage FairShare Level FS
------------ ---------- ---------- ----------- --------- ----------- ------------- --------- ----------
root 0.000000 1230 1.000000 1.000000
 beatles 500 0.500000 676 0.549593 0.549593 0.909763
 beatles harrison 25 0.250000 301 0.244715 0.445266 0.200000 0.561462
 beatles lennon 25 0.250000 102 0.082927 0.150888 0.600000 1.656863
 beatles mccartney 25 0.250000 37 0.030081 0.054734 0.800000 4.567568
 beatles starr 25 0.250000 236 0.191870 0.349112 0.400000 0.716102
 elvis 500 0.500000 554 0.450407 0.450407 1.110108
 elvis elvis 1 1.000000 554 0.450407 1.000000 1.000000 1.000000

Answer: Norm Shares / Effectv Usage

● Norm Shares and Effectv Usage – reflect the Fair Tree approach

assoc / (assoc+siblings)

● Level FS (with -l option) – Fairshare compared to siblings

● FairShare – This is the final fairshare factor (i.e. it works like it should)

Ties

● Occur when sibling associations have the same level_fs

– Extremely rare except when raw usage == 0.0

– Added complexity to the code
● Rules:

– Sibling users receive the same rank

– Sibling accounts have their children lists merged

– A user with the same level_fs as a sibling account will
receive the same rank as the account's highest ranked
user

root

AT

u3A1 A2

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4

This is one portion of the tree. AT is pictured in its entirety.

root

AT

u3A1 A2

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4

There are 83 users (not all pictured).
Some have been visited.

root

AT

u3A1 A2

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4

There are 83 users (not all pictured).
Some have been visited.

rank = 64

root

AT

u3A1 A2

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4

rank = 64

root

AT

u3A1 A2

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4

rank = 64

root

AT

u3 (.6)A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 64

root

AT

u3 (.6)A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

u3, A1, and A2 are tied at .6

rank = 64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Tied users are placed to the left

rank = 64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 64

64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 63

Next association not tied. Decrement rank.

64

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 63

64 63

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 63

Next association is tied. rank stays the same

64 63

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

rank = 63

Next association is tied. rank stays the same

64 63

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Peek

Peek at next account to check for a tie

rank = 63

64 63

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Peek

A1->level_fs == A2->level_fs

rank = 63

64 63

root

AT

u3 (.6) A1 (.6) A2 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Peek

Accounts are equal. Merge!

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Merge complete

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Merge complete

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a u1b u2a u2b u2c

Fair Tree: Tie Handling

u4 (.8)

Calculate level_fs using actual siblings, not adopted ones.
The calculations pretend that the merge never happened.

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8) u1b (1.0) u2a (.3) u2b (1.0) u2c (.4)

Fair Tree: Tie Handling

u4 (.8)

Calculate level_fs using actual siblings, not adopted ones.
The calculations pretend that the merge never happened.

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8) u1b (1.0) u2a (.3) u2b (1.0) u2c (.4)

Fair Tree: Tie Handling

u4 (.8)

Calculate level_fs using actual siblings, not adopted ones.
The calculations pretend that the merge never happened.

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8) u1b (1.0) u2a (.3) u2b (1.0) u2c (.4)

Fair Tree: Tie Handling

u4 (.8)

Sorting uses the merged list

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

Sorting uses the merged list

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

Note that the merged users are mixed
A1 A2 A1 A2 A2

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

rank = 63

64 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

rank = 63

64 63

63

Note that rank has not been decremented.
u1b receives the same rank as u3 since A1 tied u3.

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

Next association is tied. Rank stays the same

rank = 63

64 63

63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

u3 == u1b == u2b

rank = 63

64 63

63 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

Next association not tied. Decrement rank by 3 (3 ties)

rank = 60

64 63

63 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

rank = 60

64 63

63 63 60

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

rank = 59

64 63

63 63 60

Next association not tied. Decrement rank

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

rank = 59

64 63

63 63 60 59

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

64 63

63 63 60 59

Next association not tied. Decrement rank

rank = 58

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

Sorting uses the merged list

64 63

63 63 60 59 58

rank = 58

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

u3, u1b, and u2b receive equal rankings

………

63

63 63

root

AT

u3 (.6) A1 (.6)

u1a (.8)u1b (1.0) u2c (.4)u2b (1.0) u2a (.3)

Fair Tree: Tie Handling

u4 (.8)

● u3 tied A1, thus it tied A1's highest rank user, u1b
● u1b tied its adopted sibling user, u2b, since A1 and A2 were tied
● u3, u1b, and u2b receive the same fairshare factor

………

63

63 63

	Fair Tree
	Outline
	Job Prioritization
	Fairshare Factor
	Fairshare Target
	Fairshare Equation Explanation
	BYU's Setup
	Our Definition of Fair
	Disclaimer
	Why a new algorithm?
	The Problem
	Fairshare Equation
	Fairshare 3D Graph
	Fairshare Graph
	Fairshare Graph Zoomed
	Actual Fairshare Graph
	Actual Fairshare Graph Zoomed In
	Actual Fairshare Graph Zoomed In More
	Dampening Factor
	Problem with Shares Calculation (condensed)
	Problem with Shares Calculation (visual)
	Usage Effective
	Other Algorithms
	Simulation
	Timeshare on a Spaceship
	How well do algorithms perform?
	Simulation sshare
	Simulation Rules
	Traditional Multifactor Pie Charts
	Ticket-Based Pie Charts
	Depth Oblivious Pie Charts
	Fair Tree Pie Charts
	Goals of Fair Tree
	Binary Search Tree
	Level Fairshare
	Tree Traversal
	Traversal Animation
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Ranking
	sshare
	Debug
	Easy to Try
	Advantages
	Possible Concerns
	Fairshare=parent
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Appendix
	Appendix Index
	More Information
	Future Development
	Problems with Shares Calculation (expanded)
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Linear Interpolation
	Slide 106
	Slide 107
	sshare Example
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Ties
	Tie Handling Animation
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155

