

Slurm Workload Manager Overview
SC14

Danny Auble and Brian Christiansen
[da,brian]@schedmd.com

Slurm Sponsors at SC14

● Originally intended as simple resource manager, but has evolved into
sophisticated batch scheduler

● Able to satisfy scheduling requirements for major computer centers with use
of optional plugins

● No single point of failure, backup daemons, fault-tolerant job options
● Highly scalable (3.1M core Tianhe-2 at NUDT)
● Highly portable (autoconf, extensive plugins for various environments)
● Open source (GPL v2)
● Operating on many of the world's largest computers
● About 500,000 lines of code today (plus test suite and documentation)

Slurm Workload Manager Overview

Enterprise Architecture

SlurmDBD

Slurm
(cluster 1)

MySQL
Slurm

(cluster N)

User account and limit info
Job and step accounting info

Slurm
administration

tools

Jobs &
status

Accounting
data

User and bank
Limits and
preferences

Slurm
user
tools

Architecture

● Kernel with core functions plus about 100 plugins to support various
architectures and features

● Easily configured using building-block approach
● Easy to enhance for new architectures or features, typically just by

adding new plugins

SLURM Kernel

Authentication
Plugin

MPI
Plugin

BLCR

Checkpoint
Plugin

Topology
Plugin

Munge mvapich Tree

Accounting Storage
Plugin

SlurmDBD

Scheduling Capabilities

● Fair-share scheduling with hierarchical bank accounts
● Preemptive and gang scheduling (time-slicing parallel jobs)
● Integrated with database for accounting and configuration
● Resource allocations optimized for topology
● Advanced resource reservations
● Manages resources across an enterprise

Multifactor Prioritization Plugin

● Jobs can be prioritized using highly configurable parameters
– Job age

– Job partition (queue)

– Job size

– Job Quality Of Service (QOS)

– User and account's fair-share allocation

Scalability

● Everything is multi-threaded
● Separate read and write locks on the various data structures in

the daemons
● No single point of failure
● RPCs designed to minimize bottlenecks from control daemon as

much as possible

On-node Topology Optimization

● Users have complete control over task layout across the nodes,
sockets, cores and threads to optimize application performance

Topology Plugin Optimization

Switch 2

Switch 4 Switch 5 Switch 6 Switch 7

NNNN

Switch 3Switch 1Switch 0

Job layout on
BlueGene

(sview output)

3-D Hilbert curve for
Sun Constellation

NNNNNNNN NNNN

Communications

● Hierarchical communications with configurable fanout and fault-
tolerance

Hierarchical
communications
TreeWidth=4

Hostlist Expressions

Sample Slurm configuration file (excerpt)
#
NodeName=tux[0-1023] Sockets=4 CoresPerSocket=6
#
PartitionName=debug Nodes=tux[2-17] Default=yes Maxtime=30
PartitionName=batch Nodes=tux[18-1023] MaxTime=24:00:00

● All commands and configuration files are designed to compress
host names using a prefix and numeric suffix

● Easy to configure large systems

Database Use

● Job accounting information written to a database plus
– Information pushed out to scheduler daemons

– Fair-share resource allocations

– Many limits (max job count, max job size, etc)

– Based upon hierarchical accounts
● Limits by user AND by accounts

“All I can say is wow – this is the most flexible, useful scheduling tool I’ve ever run
across.”
Adam Todorski, Rensselaer Polytechnic Institute

Hierarchical Account Example

Root
100%

Division A
33.3%

Division B
33.3%

Division C
33.3%

Group Gamma
20%

Group Alpha
50%

Group Beta
30%

Pam
20%

Pat
25%

Bob
25%Ted

30%

Advanced Features

● Scheduling for generic resources (e.g. GPUs, MICs)
● User control over CPU frequency (performance and energy use)
● Real-time accounting down to the task level

– Identify specific tasks with high CPU or memory usage

– Record energy consumption by job

● Job profiling
– Periodically capture each task's memory, CPU, power, network and I/O

14.11 Features

● Core specialization
● Improved job array performance and scalability
● Support for heterogeneous generic resources
● CPU governor options
● Automatic job requeue policy based on exit value
● Job "reboot" option for Linux clusters
● Database performance enhancements
● SelectTypeParameters option CR_PACK_NODES
● Support for non-consumable generic resources
● API usage statistics by user, type, count and time consumed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

