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● Originally intended as simple resource manager, but has evolved into 
sophisticated batch scheduler

● Able to satisfy scheduling requirements for major computer centers with use 
of optional plugins

● No single point of failure, backup daemons, fault-tolerant job options
● Highly scalable (3.1M core Tianhe-2 at NUDT)
● Highly portable (autoconf, extensive plugins for various environments)
● Open source (GPL v2)
● Operating on many of the world's largest computers
● About 500,000 lines of code today (plus test suite and documentation)

Slurm Workload Manager Overview



  

Enterprise Architecture
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Architecture

● Kernel with core functions plus about 100 plugins to support various 
architectures and features

● Easily configured using building-block approach
● Easy to enhance for new architectures or features, typically just by 

adding new plugins
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Scheduling Capabilities

● Fair-share scheduling with hierarchical bank accounts
● Preemptive and gang scheduling (time-slicing parallel jobs)
● Integrated with database for accounting and configuration
● Resource allocations optimized for topology
● Advanced  resource reservations
● Manages resources across an enterprise



  

Multifactor Prioritization Plugin

● Jobs can be prioritized using highly configurable parameters
– Job age

– Job partition (queue)

– Job size

– Job Quality Of Service (QOS)

– User and account's fair-share allocation



  

Scalability

● Everything is multi-threaded
● Separate read and write locks on the various data structures in 

the daemons
● No single point of failure
● RPCs designed to minimize bottlenecks from control daemon as 

much as possible



  

On-node Topology Optimization

● Users have complete control over task layout across the nodes, 
sockets, cores and threads to optimize application performance



  

Topology Plugin Optimization
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Communications

● Hierarchical communications with configurable fanout and fault-
tolerance

Hierarchical 
communications 
TreeWidth=4



  

Hostlist Expressions

# Sample Slurm configuration file (excerpt)
#
NodeName=tux[0-1023] Sockets=4 CoresPerSocket=6
#
PartitionName=debug Nodes=tux[2-17] Default=yes Maxtime=30
PartitionName=batch Nodes=tux[18-1023] MaxTime=24:00:00

● All commands and configuration files are designed to compress 
host names using a prefix and numeric suffix

● Easy to configure large systems



  

Database Use

● Job accounting information written to a database plus
– Information pushed out to scheduler daemons

– Fair-share resource allocations

– Many limits (max job count, max job size, etc)

– Based upon hierarchical accounts
● Limits by user AND by accounts

“All I can say is wow – this is the most flexible, useful scheduling tool I’ve ever run 
across.”
Adam Todorski, Rensselaer Polytechnic Institute



  

Hierarchical Account Example
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Advanced Features

● Scheduling for generic resources (e.g. GPUs, MICs)
● User control over CPU frequency (performance and energy use)
● Real-time accounting down to the task level

– Identify specific tasks with high CPU or memory usage

– Record energy consumption by job

● Job profiling
– Periodically capture each task's memory, CPU, power, network and I/O



  

14.11 Features

● Core specialization
● Improved job array performance and scalability
● Support for heterogeneous generic resources
● CPU governor options
● Automatic job requeue policy based on exit value
● Job "reboot" option for Linux clusters
● Database performance enhancements
● SelectTypeParameters option CR_PACK_NODES
● Support for non-consumable generic resources
● API usage statistics by user, type, count and time consumed 
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