). CSCS ETHz(rich
A\ . Centro Svizzero di Calcolo Scientifico
i 2

Swiss National Supercomputing Centre

Using and Modifying the BSC Slurm Workload
Simulator

Slurm User Group Meeting 2015
Stephen Trofinoff and Massimo Benini, CSCS

September 16, 2015

Using and Modifying the BSC Slurm Workload
Simulator

= The Project

= The BSC Simulator (Rough
Overview)

= General Simulator Information
= Worked Performed

= Preliminary Tests and Results
= Future Work and ldeas

= System Diagrams

= Summary

\\b:o CSCS Insert Footer | 2 ETHziirich

<~&®. cCscs ETH:z(irich

\‘ ‘ Centro Svizzero di Calcolo Scientifico
A\ Swiss National Supercomputing Centre

The Project

Purpose

Have ability to simulate a workload, past or theoretical
(potentially simulating months of jobs in a relatively short
amount of time) and to analyze the state of the system
(priorities, states, shares, etc.) under different configurations.
In so doing, we could:

» Make better decisions about which configurations options to
use

» Answer questions such as when a given job should start

» Determine what the priority or values of shares would be for
a job or an account at a given time

\:0" CSCS Insert Footer | 4 E'HZUF/C/’)

General

» Set up some initial test environments using:
» VM's
» Emulated Slurm system (with front-end nodes)

» Further simulation desired, mainly to quickly run loads
» BSC Simulator taken as a starting point towards this goal

» General concept is to control the time of the Slurm System
and to speed it up

\:‘:‘ CSCS Insert Footer | 5 E'"ZUF/C/’)

<& cCscs ETHzurich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

The BSC Simulator (Rough Overview)

General Components

» New system entity, “sim_mgr”--controls simulation

» If slurmctld is the “brain” of the Slurm system, then sim_mgr is the
“brain” of the simulation

» controls the time as seen by it and Slurm daemons

» reads job information from file

» interacts with Slurm creating jobs based on info

» Shared memory used to store time and other common data

» Adds sim_lib--contains wrappers for needed routines (e.qg.
time())

» Various modifications to slurmctld and slurmd

\:o:o cscs Insert Footer | 7 ETHziirich

BSC Workload Simulator Contents

» BSC code written for 2.5.0-rc2--not maintained since

» Launch helper scripts:

» exec_sim.pl
» exec_controller.sh
» exec_slurmd.sh

» sim_sbatch--simple script that preloads sim_lib and runs
sbatch)

» Uses various special input files:

» test.trace: information on jobs to simulate

» rsv.trace: information on reservations to simulate

» users.sim: list of simulated user names (used by trace builder tool
and sim_lib.c)

\:o:o cscs Insert_Footer | 8 ETHziirich

BSC Workload Simulator Contents (cont.)

» A couple of tools for creating and viewing a workload
(test.trace) file:
» trace_builder: builds a very basic “synthetic” workload

> list_trace: displays contents of file “test.trace”
» update trace: allows a partial modification to test.trace

» Reservation field
» Dependency field
» Account field

» reset.sh: Cleaning script to remove the DB entries and
various logs from a previous run

\:o:o cscs Insert_Footer | 9 ETHziirich

BSC Workload Simulator Contents (cont.)

Wrapper functions provided by sim_lib:

» pthread create
» pthread exit

» pthread _join

> time

» gettimeofday
> sleep

<@ CSCS

Insert_Footer

10

ETH:zirich

<& cCscs ETHzurich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

General Simulator Information

About Simulated Jobs

» In simulated mode, jobs don’t do anything, they simply exist

» submit time (from trace file)
» start time (Computed by Simulated Slurm--slurmctid)

» endtime (Computed by Simulated Slurm--slurmd)

» Simulator’s concept of an event is a time when a job is to end

» The sim_mgr sends a special message, REQUEST_SIM_JOB, directly to the

slurmd before submitting a job--informing it the duration of the job

» When the time is reached the slurmd will send the normal message back to the

controller indicating that the job is finished.

\:‘:' CSCS Insert Footer | 12 E”'ZUfICh

About Simulated Jobs (Process Flow)

» In special thread “time_mgr”, the sim_mgr steps through time

» For each iteration, time step (1 simulated second):

» Sim_mgr loops through list of job specs read in at start from test.trace*
» Sim_mgr sends special message (REQUEST_SIM_JOB) directly to slurmd
» Jobid

» Duration

» Builds list of argument strings from the relevant fields in the job spec
» Forks a process and exec's sim_sbatch with the argument strings

» Increment time (time step fixed at 1 second)

\:‘:' CSCS Insert Footer | 13 E'"ZUF/C/’)

Running the BSC Simulator

» The following are the basic instructions from BSC's “INSTALL” file (step #10)

» cd into the SIM_DIR directory
> $./exec_sim.pl SIM_DIR 100
» This scripts calls sim_mgr which calls slurmctld and slurmd.

» After 10 seconds or so do:

> % ps axl | grep slurm
» If you can not see sim_mgr, slurmctld and slurmd, there's a problem
» Check exec_sim.log, sim_mgr.log, slurmctld.log and slurmd_sim.log in
SIM_DIR

» Above shows how to run the simulator until 100 jobs complete

» Can also run the simulator for a specified amount of time

\:‘:' CSCS Insert_Footer | 14 E,"ZUfiCh

Running the BSC Simulator

» Original Simulator determines number of jobs completed by counting lines in file:

SIM_DIR/slurm_varios/acct/job_comp.log

» Should run reset.sh in between simulations in order to:

» Clean database
» Remove the log files
» Mostimportantly—remove the job_comp.log (otherwise simulator will prematurely exit due to

thinking that the jobs have already been completed)

» To run for a specified amount of time, must start manually:

» Startthe sim_mgr with a specified end time (in UNIX epoch form):

» $§ sim_mgr 1442393100 # Endtimeis 16-Sep-2015 10:45

» Start the slurmctld after about 5 seconds:

> $ exec_controller.sh
» Start the slurmd

> $ exec_slurmd.sh

> Note that the start time of simulation should be start of first job in workload

\:o:o cscs Insert_Footer | 15 ETHziirich

Running the CSCS Simulator

» Doesn'’t use wrapper script for running
» Instead run sim_mgr directly

» cd into the SIM_DIR directory

» sim_mgr [end time] [fork daemons] [throttle]

» End time—As before--simulated time at which simulation should end. A

value of 0 means to run indefinitely.

» Fork daemons—indicates that sim_mgr should fork/exec the slurmctid

and slurmd [optional]

» Throttle—time interval to increment in each pass instead of just 1

simulated second--[optional and experimental]

\:':' CSCS Insert Footer | 16 E”'ZUfICh

Running the CSCS Simulator

» Should run reset.sh in between simulations to:

» Clean database
» Remove the log files

» Example: Run simulator indefinitely and start daemons:
» $ sim_mgr 0 fork

» Example: Run the simulation until 10:45am 16-Sep-2015, automatically starting
the daemons:

> $sim _mgr 1442393100 fork # End time is 16-Sep-2015 10:45

> Note that the start time of simulation should be start of first job in workload
(same as before)

\:o:o cscs Insert_Footer | 17 ETHziirich

<& cCscs ETHzurich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Worked Performed

Worked Performed

» Ported code to 14.03.8

» Created additional tools for generating/editing workloads:

» mysqltracebuild — Take historical job information from Slurm DB

» gsnap — Take a “snapshot” of currently running Slurm system (uses C-API)
> edit_trace — Allows user to edit any field in any number of records of a trace

file and for the deletion of records (an enhanced version of BSC's

update trace).

» Encountered various minor issues—started resolving these

» Encountered significant issue with simulation with ~10+ jobs simultaneously

completing

» The slurmctld reported always a failure to create a pthread

\‘:' CSCS Insert_Footer | 19 E'"ZUF/C/’)
AN

Worked Performed (cont.)

» Initially had written enhancements to expand upon the number of threads allowed by the
BSC design—encountered various problems

>
>
>

Tried increasing MAX_INDEPENDENT_THREADS from 50 to 150

Tried increasing MAX_THREADS—the slurmctld would have various problems
Increased the amount of shared memory used (product of
MAX_THREADS*thread data tsize)

Tried using getrusage at various code points but didn't see any “smoking gun”
difference between a “good” and a “bad” run.

Tried increasing the per-thread stack space from 1MB to 8MB

Checked the code to see if all thread functions used in Simulator had explicit

pthread exit—they did

Performed some tracing and noticed that threads did not seem to run for more than a

couple seconds and there was never more than 64 threads at one time.

» Thus, itdidn't appear to be a true shortage of resources

\:‘:' CSCS Insert Footer | 20 E'"ZUF/C/’)

Worked Performed (cont.)

» Simpleidea: just double current capacity of threads (from 32 to 64 threads apiece)

» Doubled the size of shared memory to 16384 bytes
> Increased the size of the bitmask arrays in shared memory from one to two long long
int
» Made various other corresponding adjustments
» Result: Increased number of threads could be run—but still had various problems
(hanging/crashing)

» Due to the many hangs and of the heavy use of semaphores, changed sem_wait to
sem_timedwait
» Result: Simulator ran better, still had issues but was not hanging anymore

» Without slurmdbd: slurmd would immediately die (1st time), once restarted it would
remain up and jobs would run to completion
» With slurmdbd: slurmd would remain running but jobs would be stuck in pending state

» This was due to the time_mgr being stuck in wait_thread_running

\:‘:' CSCS Insert Footer | 21 E'"ZUF/C/’)

Worked Performed (cont.)

Concluded we focused on wrong problem--# of threads
Real problem appeared to be an issue with the many different locks in use

Number of threads rapidly increasing was probably due to locking issues

YV V V VY

Due to time and sense that the nature of the design was limiting and overly sensitive to
locking, decided to take a different approach

Y

Still intercept time calls (time, gettimeofday) but not sleep

» Without sleep being wrapped, no need for wrapping the pthreads functions and using the
various bit masks, semaphores, etc.

\:':' CSCS Insert Footer | 22 m ,ZUriCh

Worked Performed (cont.)

Have begun re-writing much of the code.

» Eliminated the wrappers for pthread functions and supporting code

Replaced fork/exec of special sbatch with call to Slurm C-API (stilluse BSC RPC as well)
Added logic for sim_mgr to fork/exec both the slurmctld and slurmd

Use a signal from slurmctld and slurmd to notify sim_mgr when they are ready

vV VYV V VY

Use only a single semaphore to synchronize the sim_mgr with the controller and slurmd

\:‘:' CSCS Insert Footer | 23 E'" 7 U r I c h

Work Performed (cont.)

Wrapper functions provided by sim_lib:

- —pthread-create
- —pthread—exit

> ol Lo

» time

» gettimeofday
- -sleep

\:‘" CSCS Insert Footer | 24 E'"ZUF/C/’)

<& cCscs ETHzurich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Preliminary Tests and Results

Tests

» Still in early phase

» Defining categories and specific tests

» Will focus on the following points:

» accuracy

» consistency
» performance
> utility

\:‘:' CSCS Insert Footer | 26 m ,ZUriCh

A few early results

» Some crude consistency tests performed

» Took some of our existing workload files and ran multiple
times comparing the output from run to run

» Submission times are always exactly the same
» Job durations have slight variation (~1 second)

» Have seen variations (usually just seconds) in both start
time and end time

» Need to investigate what is causing this

\:0" CSCS Insert Footer | 27 E'"ZUF/C/’)

Small 50-Job Workload Results

Consistency Tests
Start Times
1434000015
) Nd AAA
) N -
1434000010 /NN NN W W W Wy W iy Y
AAAAAAA
1434000005 =4=Run 1
=4=Run 2
4~Run3
1434000000 === Run 4
e=RUn 5
]
E
E
3 1433999995
&
X
[
2
1433999990

123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Jobs

\“'O CSCS Insert_Footer | 28 ETHziirich
AN

Small 50-Job Workload Results

Consistency Tests
End Times
1434'000'565.00
L L R EVEVEVEVEVEVEVEVIVENVEN 2 N
£ 1434'000'555.00
F =4—Run1
<
] =f=Run2
2
X ==Run3
£ 1434°000'550.00
l—l—l—‘—l—l—‘—t—l—i—‘ —<Run4
=f=Run 5
1'434'000'545.00
1434'000'540.00
123 4 56 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Jobs

\?:. CSCS Insert_Footer | 29 ETHziirich

Small 50-Job Workload Results

Consistency Tests
Job Durations

552

551

I

-

g 550 =4=Run1

]

" —-Run?

£

F 519 =4=Run3

g

é —=Run4
==Run 5

548

547 T 1

12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Jobs

\‘O'O CSCS Insert_Footer | 30 ETHziirich
AN

<& cCscs ETHzurich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Future Work and Ideas

Future Work and Ideas

>

Y

YV V VY V V

Continue to define and execute more thoroughly and rigorously the tests

» Try to improve consistency
» Fixany problems encountered along the way

Remove any hardcoded paths where appropriate

Change squeue and scontrol to use simulated time in printing (sq -i ...) and in computing run times of
jobs

Resolve occasional CG state job

use more job attributes and ensure use of correct attributes

Should enable slurmbdb to use the simulated time [may not be necessary]
place code in correct location of the source directory tree

Potentially create a real “sim_sbatch” that, using C-API, would submit the simulated job to the simulated
Slurm, preloading the library automatically and sending the necessary RPC directly to the slurmd for it
to build an end-of-job event

Potentially incorporate the sim_lib into the standard Slurm library so that there would be no need to
specially preload anything. Also would allow, logically, for the placement of the code into the normal
branches of the source tree [may not be possible, may not make sense]

\:‘:' CSCS Insert Footer | 32 E'"ZUF/C/’)

Future Work and Ideas (cont.)

» add time-throttling features (arbitrary time increment)

» Experiment more with the arbitrary throttle--see if it can be fixed

» possibly have "intelligent" throttle where the sim_mgr would automatically
skip ahead to the next time with an event such as job submit, or expected
job completion

» Note that all arbitrary throttling inherently runs risk of losing accuracy with
real system especially the greater the jumps in time

> Note that the need for speeding up the simulation is especially important due
to the tremendous slow down due to the synchronization of the time

\:‘:' CSCS Insert Footer | 33 E'"ZUF/C/’)

<~&®. cCscs ETH:z(irich

\‘ ‘ Centro Svizzero di Calcolo Scientifico
A\ Swiss National Supercomputing Centre

System Diagrams

System Overview of Original BSC WS

exec_sim.log
rpc_threads.info
slurmctld.maps

exec_controller.sh

~
.
S
S
Rl
LS
~

., test.trace
D

ke /

sim_mgr

) exec_slurmd.sh
sim_sbatch | SIM RPC

. slurmctld : slurmd

slurmctld.log o
slurmd.log

slurm_sim.log

System Overview of CSCS-modified BSC
WS

test.trace

sim_mgr

slurmctld slurmd

slurmctld.log slurmd.log

Summary

» Site wants a tool to simulate Slurm workloads

» Started with old BSC Slurm Workload Simulator and are
modifying it

» Some more work to do but have a basic simulator running

» Main question to answer—is it useful???

\:0" CSCS Insert Footer | 37 E'"ZUF/C/’)

& . CscCs ETHzirich
(. Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

) /
)
2)

’;@@) /) l/uw M\/(e)? Nz

l”}f) /% 4'\/-"'# f‘eﬁi A d‘am

Quie S5E5. nade

gme f”Aw./npwﬁ'Hc'[o/\’\)H‘o
(Nmber = ramdam.mndm‘r(q,.eo
pn rr 'Well | {03 f1and «£0.!s formas

: /,@(/(, 7(«(1 (ZOOM

Thank you for your attention.

% cs¢s ETHziirich

A\ Centro Svizzero di Calcolo Scientifico
\‘ Swiss National Supercomputing Centre

Appendix

Job Attributes Supported by Simulator

> jobid
username
submit—the UNIX epoch time at which the job should be “submitted”

duration—run time in seconds of job (unless getting timed out due to
wclimit)

wclimit—wall clock limit. Max time of job before it gets timed out.

vV V V

tasks

goshame

partition—job partition to use
account

cpus_per _task
tasks per node

reservation

YV VV V V V V VYV Y

dependency

\:‘:' CSCS Insert Footer | 40 E," Zz U r / Ch

BSC Workload Simulator Contents (cont.)

Data stored in shared memory (timemgr_data pointer to shared memory)

» global sem sem t*

» thread sem sem_t*

» thread sem back sem_t*

» current sim unsigned int*
» current micro unsigned int¥*
» threads data thread data t*
» current threads unsigned int¥*
» proto threads unsigned int*
> sleep map array long long int*
» thread exit array long long int*
» thread new array long long int¥*
» fast threads counter unsigned int*
» pthread create counter unsigned int*
» pthread exit counter unsigned int*
» slurmctl pid int*

» slurmd pid int*

\"" CSCS Insert_ Footer | 41
S 4

Scalar

Array [0:MAX THREADS-1]

Array [0:MAX THREADS-1]
Scalar--current simulated time
Scalar--

Scalar(experimented w/2elements)--
Scalar(experimented w/2elements)--
Scalar(experimented w/2elements)--
Scalar--

Scalar--

Scalar--

Scalar--pid of slurmctld
Scalar--pid of slurmd

ETHzirich

BSC Workload Simulator Contents

The simulation_lib directory contains:

trace builder.c

slurm_sim.pl

sim_mgr.c: Source code for the simulator manager

sim_ctlr.c

rsv_trace builder.c

rpc_threads.pl: Simple script for producing the rpc_threads.info file
list_trace.c: Source code for list_trace (viewer of test.trace)

V V V V V VYV VY V

update trace.c: Simple program that allows user to partially modify trace
files

A\

sim_lib.c: Contains library code needed by Slurm Simulator system

\4

rpc_threads.info

\:‘:' CSCS Insert Footer | 42 E,HZUfiCh

