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What is a job and a step?

● Job
○ An allocation of resources (nodes, cpus, memory, gpus, licenses, etc.)
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What is a job and a step?

● Step
○ Allocated resources of the job that run processes/tasks
○ Can carve up allocated resources into multiple steps
○ Steps typically run parallel programs (e.g. MPI)
○ Steps can run serially or concurrently
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#!/bin/bash
#SBATCH -n6
 
srun -n4 --exact a.out &
srun -n2 --exact b.out &
wait



What is a job and a step?

● batch step
○ Runs the batch script

● interactive step
○ Step created on compute node with a PTY for interactive work inside allocation

● extern step
○ Enabled through PrologFlags=contain
○ Runs on all slurmds
○ Used to:

■ Launch prologs before allocation
■ Setup X11 forwarding, containers
■ Track processes started outside of allocation (e.g. pam_slurm_adopt, ssh, mpi)
■ Did you know? mpirun typically uses srun to launch the task

● job step
○ execs and shepherds processes
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● Step management is done by the controller
○ Can be a source of congestion

● Step management requires controller job write lock
○ locks up the system
○ Slurm is highly threaded but not highly concurrent

● Bigger issue when creating many steps
○ Doing own resource management within allocation
○ e.g. 1 allocation with 1000's of steps

Step congestion



● Move step management out of the controller
● step management done by stepd (stepmgr)
● Reduce rpc congestion and locking on the controller

Step relief



Stepmgr

● Designate a stepd as the stepmgr for the job
○ batch step / extern step / interactive step

● Job allocation/environment tells which slurmd has the stepmgr
○ STEPMGR_INTERFACE=<host>

● Stepmgr creates and manages steps for the job
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Step Launch Sequence

srun stepmgr 1.   srun sends step create request to stepmgr
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Things to tackle / figure out



Accounting

● Currently, the stepds reverse fanout (7) to stepd 0
○ stepds send to the controller if can't reverse

● Controller sends info to dbd
● But controller doesn't have record of steps
● Options

○ No step accounting
○ Accounting through slurmstepd
○ Accounting through slurmctld



Heterogenous jobs

● The controller keeps track of the different jobs in a het job
○ thus the het step id.

● Controller to do step management for het jobs



Clients

● squeue -s
● scontrol show steps

○ query all slurmds and stepds to get list of steps?



Questions or Thoughts?




