
Step Management
Enhancements

Brian Christiansen

What is a job and a step?

● Job
○ An allocation of resources (nodes, cpus, memory, gpus, licenses, etc.)

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Node: tux123
Socket: 0

Job 1
Job 2
Job 3

Partition debug

#!/bin/bash
#SBATCH -n6

…

What is a job and a step?

● Step
○ Allocated resources of the job that run processes/tasks
○ Can carve up allocated resources into multiple steps
○ Steps typically run parallel programs (e.g. MPI)
○ Steps can run serially or concurrently

Core 0
Core 1
Core 2
Core 3
Core 4
Core 5

Node: tux123
Socket: 0

Job 1
Job 2
Job 3

Partition debug
Step 0

Step 1

#!/bin/bash
#SBATCH -n6

srun -n4 --exact a.out &
srun -n2 --exact b.out &
wait

What is a job and a step?

● batch step
○ Runs the batch script

● interactive step
○ Step created on compute node with a PTY for interactive work inside allocation

● extern step
○ Enabled through PrologFlags=contain
○ Runs on all slurmds
○ Used to:

■ Launch prologs before allocation
■ Setup X11 forwarding, containers
■ Track processes started outside of allocation (e.g. pam_slurm_adopt, ssh, mpi)
■ Did you know? mpirun typically uses srun to launch the task

● job step
○ execs and shepherds processes

1,2

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential

slurmdbd

1,2

4

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd

3 3

slurmd

slurmdbd

6

1,2

4

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd

3 3

slurmd

slurmd

slurmstepd slurmstepd

5
6

slurmdbd

6

1,2

4

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7
7

slurmdbd

6

1,2

4

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks
8. On task termination, slurmstepd notifies srun
9. slurmstepd sends step completions to slurmctld
(per reverse fanout (7))

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7,8
7,8

9

slurmdbd

6

1,2

4

Step Launch Sequence

srun slurmctld 1. srun sends step create request to slurmctld
2. slurmctld responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks
8. On task termination, slurmstepd notifies srun
9. slurmstepd sends step completions to slurmctld
(per reverse fanout (7))
10. slurmctld sends step completion to slurmdbd

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7,8
7,8

9

slurmdbd
10

● Step management is done by the controller
○ Can be a source of congestion

● Step management requires controller job write lock
○ locks up the system
○ Slurm is highly threaded but not highly concurrent

● Bigger issue when creating many steps
○ Doing own resource management within allocation
○ e.g. 1 allocation with 1000's of steps

Step congestion

● Move step management out of the controller
● step management done by stepd (stepmgr)
● Reduce rpc congestion and locking on the controller

Step relief

Stepmgr

● Designate a stepd as the stepmgr for the job
○ batch step / extern step / interactive step

● Job allocation/environment tells which slurmd has the stepmgr
○ STEPMGR_INTERFACE=<host>

● Stepmgr creates and manages steps for the job

Stepmgr

Stepmgr

Stepmgr

Stepmgr

1,2

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential

slurmdbd

1,2

4

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd

3 3

slurmd

slurmdbd

6

1,2

4

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd

3 3

slurmd

slurmd

slurmstepd slurmstepd

5
6

slurmdbd

6

1,2

4

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7
7

slurmdbd

6

1,2

4

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks
8. On task termination, slurmstepd notifies srun
9. slurmstepd sends step completions to stepmgr
(per reverse fanout (7))

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7,8
7,8

9

slurmdbd

6

1,2

4

Step Launch Sequence

srun stepmgr 1. srun sends step create request to stepmgr
2. stepmgr responds with step credential
3. srun opens sockets for I/O
4. srun forwards credential with task info to slurmd
5. slurmd forwards request as needed (per fanout)
6. slurmd forks/execs slurmstepd
7. slurmstepd connects I/O and launches tasks
8. On task termination, slurmstepd notifies srun
9. slurmstepd sends step completions to stepmgr
(per reverse fanout (7))
10. a. no step accounting
 b. stepmgr sends step completion to slurmdbd
 c. stepmgr sends to slurmctld, slurmctld sends to
 slurmdbd

3 3

slurmd

7

slurmd

slurmstepd slurmstepd
7

5
6

task(s) task(s)

7,8
7,8

9

slurmdbd
10

Things to tackle / figure out

Accounting

● Currently, the stepds reverse fanout (7) to stepd 0
○ stepds send to the controller if can't reverse

● Controller sends info to dbd
● But controller doesn't have record of steps
● Options

○ No step accounting
○ Accounting through slurmstepd
○ Accounting through slurmctld

Heterogenous jobs

● The controller keeps track of the different jobs in a het job
○ thus the het step id.

● Controller to do step management for het jobs

Clients

● squeue -s
● scontrol show steps

○ query all slurmds and stepds to get list of steps?

Questions or Thoughts?

