Improving HPC applications scheduling with predictions based on automatically-collected historical data

Carlos Fenoy García carles.fenoy@bsc.es

September 2014

Index

- 1 Introduction
 - Introduction
 - Motivation
 - Objectives
- 2 Proposed Solution
 - HPerf
- 3 Evaluation
 - Overhead analysis
 - Applications characterization and workload generation
- 4 Tests
 - Description
 - Workload High
- 5 Conclusions

Introduction

Supercomputers have increased their resource number in last years

Resource management has become critical to maximise its usage due to resource sharing

- The evolution pace of different components is not equal on all the parts: Memory bandwidth evolves slower than processors speed.
- Existing resource selection mechanisms only focus on CPUS and Memory.
 Other limiting resources exist
 - Interconnect bandwidth
 - Memory bandwidth

Introduction

- Previous work exist to solve the memory bandwidth management issue. The PhD thesis by Francesc Guim introduces the Less Consume selection policy, that considers the memory bandwidth as a new resource.
- Less Consume was later validated, porting the policy to a real system and analysing its behaviour.
- However, this port was done on MareNostrum 2, a different arquitecture to the one currently available in MareNostrum 3.
- This policy requires users to specify the amount of memory bandwidth needed by each job.

Motivation

- Users do not necessarily know the resources used by their applications.
- The impact of sharing resources on the applications perfomance.
- Improvement of monitoring systems enables the collection of multiple metrics per job.
- The lack of trusty mechanisms for specifying resources.

Objectives

- Port previous work to a new arquitecture (MareNostrum 3).
- Enhance an existing resource selection policy with the usage of historical data to predict the resource usage by jobs.
 - Aware of shared resources (memory bandwidth)
 - Historical data collected by a transparent monitoring system

1

Data is used in job scheduling

- Analyse the behaviour and the benefits of the policy
 - Compare the policy with other existing policies

Index

- 1 Introduction
 - Introduction
 - Motivation
 - Objectives
- 2 Proposed Solution
 - HPerf
- 3 Evaluation
 - Overhead analysis
 - Applications characterization and workload generation
- 4 Tests
 - Description
 - Workload High
- 5 Conclusions

Historical Performance Data (HPerf)

- The system proposed predicts the resources usage of an application based on monitoring information gathered from previous equivalent executions.
- This system uses a user-provided tag to identify the kind of job.
- Combines existing technologies to improve the scheduling of applications:
 - Resource selection policy aware of memory bandwidth (Less Consume)
 - Monitoring system able to collect per job information (PerfMiner)
 - Scheduler and resource management (Slurm)

- If at the submission time the tag is found, the average of the resource usage will be used as the resource requirements for the job.
- If it is not found, the application will run with exclusive execution to favour the monitoring.

Index

- 1 Introduction
 - Introduction
 - Motivation
 - Objectives
- 2 Proposed Solution
 - HPerf
- 3 Evaluation
 - Overhead analysis
 - Applications characterization and workload generation
- 4 Tests
 - Description
 - Workload High
- 5 Conclusions

System analysis

In order be able to analyse the system, the following previous work was done:

- PerfMiner overhead analysis.
- Applications characterization.
 - Study of the resources used by an application.
 - Study of the time elapsed per iteration for each application.
- Workload generation:

A workload generator was chosen due to the unfeasibility of using real production applications.

PerfMiner study

Overhead analysis of PerfMiner with two sets of 100~jobs. (CG class D with 64 tasks)

Workload generation: applications characterization

Applications used for the generation of the workload characterized by their use of memory bandwidth:

- High
 - CG class D
 - Synthetic application with high memory bandwidth usage
- Medium
 - CG class C
- Low
 - CG class B

Workload generation

The Lublin-Feitelson model was used to generate the workload.

- Generates 100 jobs
- Provides:
 - Number of cpus (2-64)
 - Job duration
 - Job arrival time

Combining the workload with the applications list 2 final workloads were obtained:

	Medium	High
high	54	84
medium	27	7
low	19	9

The time limit used for the jobs of the workload was the calculated with the application running standalone.

Index

- 1 Introduction
 - Introduction
 - Motivation
 - Objectives
- 2 Proposed Solution
 - HPerf
- 3 Evaluation
- Overhead analysis
 - Applications characterization and workload generation
- 4 Tests
 - Description
 - Workload High
- 5 Conclusions

Description

Description

Both workloads (HIGH & MEDIUM) were run with 3 different scheduling policies:

- ConsRes: Default Slurm scheduling policy. Considers only cpus and memory.
- LessC: Less Consume policy aware of the memory bandwidth usage per application.
- HPerf: Less Consume + Historical Perfomance data. Automatically gets the jobs resource consumption.
 - With empty database.
 - With preloaded database.

For each policy tests were run with:

- Unlimited grace time.
- Limited grace time. Kills the jobs after 5 minutes of the time limit.

HIGH: Unlimited time

HIGH: Limited grace time

Finishing status

Slowdown

Waiting time

CPU usage

Useful CPU usage

Job run time predictability

Index

- 1 Introduction
 - Introduction
 - Motivation
 - Objectives
- 2 Proposed Solution
 - HPerf
- 2 Evaluation
 - Overhead analysis
 - Applications characterization and workload generation
- 4 Tests
 - Description
 - Workload High
- 5 Conclusions

Conclusions

- The usage of the monitoring data for job scheduling results in better allocation that:
 - Improves the applications performance.
 - Increases the useful cpu usage.
 - Reduces the shared resources overload.
 - Increases the waiting time.
- Avoids users providing information they may not know.
- Requires better mechanisms to measure the memory bandwidth to increase the solution performance.

Improving HPC applications scheduling with predictions based on automatically-collected historical data

Carlos Fenoy García carles.fenoy@bsc.es

September 2014