Improving HPC applications scheduling with predictions
based on automatically-collected historical data

Carlos Fenoy Garcia
carles.fenoy@bsc.es

September 2014

E—
Index

Introduction
m Introduction
m Motivation
m Objectives

Proposed Solution
m HPerf

Evaluation
m Overhead analysis
m Applications characterization and workload generation

Tests
m Description
m Workload High

Conclusions

(QEELTEEEIIN Introduction

Introduction

m Supercomputers have increased their resource number in last years

4

Resource management has become critical
to maximise its usage due to resource sharing

m The evolution pace of different components is not equal on all the parts:
Memory bandwidth evolves slower than processors speed.

m Existing resource selection mechanisms only focus on CPUS and Memory.
Other limiting resources exist

m Interconnect bandwidth
® Memory bandwidth

(QEELTEEEIIN Introduction

Introduction

m Previous work exist to solve the memory bandwidth management issue. The
PhD thesis by Francesc Guim introduces the Less Consume selection policy,
that considers the memory bandwidth as a new resource.

m Less Consume was later validated, porting the policy to a real system and
analysing its behaviour.

m However, this port was done on MareNostrum 2, a different arquitecture to
the one currently available in MareNostrum 3.

m This policy requires users to specify the amount of memory bandwidth
needed by each job.

Motivation

m Users do not necessarily know the resources used by their applications.

m The impact of sharing resources on the applications perfomance.

m Improvement of monitoring systems enables the collection of multiple metrics
per job.

m The lack of trusty mechanisms for specifying resources.

Objectives

m Port previous work to a new arquitecture (MareNostrum 3).

m Enhance an existing resource selection policy with the usage of historical data
to predict the resource usage by jobs.

m Aware of shared resources (memory bandwidth)
m Historical data collected by a transparent monitoring system

I

Data is used in job scheduling

m Analyse the behaviour and the benefits of the policy
m Compare the policy with other existing policies

6/27

Index

Proposed Solution
n HPerf

7/27

Historical Performance Data (HPerf)

m The system proposed predicts the resources usage of an application based on
monitoring information gathered from previous equivalent executions.

m This system uses a user-provided tag to identify the kind of job.

m Combines existing technologies to improve the scheduling of applications:

m Resource selection policy aware of memory bandwidth (Less Consume)
m Monitoring system able to collect per job information (PerfMiner)
m Scheduler and resource management (Slurm)

8/27

Proposed Solution [zIEEe3

Consumable Resources (ConsRes)

Sbatch Slurmctld Configuration File

Memory

User

\

Selection Plug-in
(CPUS
Node 1 Memory

Node 2 Node n

Proposed Solution [zIEEe3

Less Consume (LessC)

Sbatch Slurmctld Configuration File
Memory Bandwidth

Memory
Memory Bandwidth

User

\

Selection Plug-in
CPUS Memory Bandwidth
Node 1 Memory

Node 2 Node n

Proposed Solution [zIEEe3

Historical Performance data (HPerf)

Sbatch Slurmctld Configuration File
Job Submit Plug-in Memory Bandwidth
Memory
Memery-Bareiwieth]
User Id TAG

Prediction
Selection Plug-in

CPUS Memory Bandwidth

Memory

Node 2 Node n PerfMiner DB

m If at the submission time the tag is found, the average of the resource usage

will be used as the resource requirements for the job.
m If it is not found, the application will run with exclusive execution to favour

the monitoring.

Evaluation

Index

Evaluation
m Overhead analysis
m Applications characterization and workload generation

10/27

Evaluation

System analysis

In order be able to analyse the system, the following previous work was done:

m PerfMiner overhead analysis.

m Applications characterization.

m Study of the resources used by an application.
m Study of the time elapsed per iteration for each application.

m Workload generation:
A workload generator was chosen due to the unfeasibility of using real

production applications.

11/27

PerfMiner study

Overhead analysis of PerfMiner with two sets of 100 jobs.

(CG class D with 64 tasks)

time (s)

260

250

240

230

220

210

200

190

PerfMiner overhead analysis

With Monitoring

Without Monitoring

. Average
= Min-Max

Applications characterization and workload generation
Workload generation: applications characterization

Applications used for the generation of the workload characterized by their use of
memory bandwidth:
m High
m CGclass D
m Synthetic application with high memory bandwidth usage
m Medium
m CGclass C
m Low
m CGclass B

13 /27

Workload generation

The Lublin-Feitelson model was used to generate the workload.
m Generates 100 jobs
m Provides:

m Number of cpus (2-64)
m Job duration
m Job arrival time

Combining the workload with the applications list 2 final workloads were obtained:

Medium | High

high 54 84
medium 27 7
low 19 9

The time limit used for the jobs of the workload was the calculated with the
application running standalone.

14 /27

Index

Tests
m Description
m Workload High

15 /27

Description

Both workloads (HIGH & MEDIUM) were run with 3 different scheduling policies:
m ConsRes: Default Slurm scheduling policy. Considers only cpus and memory.

m LessC: Less Consume policy aware of the memory bandwidth usage per
application.

m HPerf: Less Consume + Historical Perfomance data. Automatically gets the
jobs resource consumption.

m With empty database.
m With preloaded database.

For each policy tests were run with:
m Unlimited grace time.

m Limited grace time. Kills the jobs after 5 minutes of the time limit.

16 /27

£
=
I
o
H
S
=
o
=

HIGH: Unlimited time

HPerf DB

HPerf DB

£
=
I
o
H
S
=
o
=

HIGH: Limited grace time

Finishing status

Job finishing status

90
80
70
60

® OverTime

Unlimited 801 = Completed

Jobs

30
20
10

ConsRes LessC HPerf HPerf DB

Job finish status

m Killed
= OverTime
= Completed

Limited

Jobs

ConsRes LessC HPerf HPerf DB

19/27

Slowdown

25

Unlimited 15

Limited 15

ConsRes

ConsRes

S50 Workload High

Jobs slowdown

m— Average
‘ ‘ ‘ = Min-Max
LessC HpPerf HPerf DB
Jobs slowdown
m—— Average

== Min-Max

R

LessC HpPerf HPerf DB

20

Waiting time

time (s)

time (s)

14000

12000

10000

14000

12000

10000

S50 Workload High

CPU usage

Cpu usage

100

2388

Unlimited . = Usage

8888

ConsRes LessC HPerf HPerf DB

Cpu usage

m Usage

Limited

385883888

ConsRes LessC HPerf HPerf DB

N
N
o
~

Useful CPU usage

Useful cpu usage

ConsRes LessC HPerf

HPerf DB

® Cpu Usage

23

Job run time predictability

Job time predictability

runtime/regtime

25
2

.. m— Average

Unlimited 15 — Min-Max
1
0.5
0

ConsRes LessC HPerf HPerf DB
Job time predictability
runtime/regtime

3
25

R 2 — Average

Limited —— Min-Max
15
1
0.5
0

ConsRes LessC HPerf HPerf DB

24

Index

Conclusions

25 /27

Conclusions

Conclusions

m The usage of the monitoring data for job scheduling results in better
allocation that:
m Improves the applications performance.
m Increases the useful cpu usage.
m Reduces the shared resources overload.
m Increases the waiting time.

m Avoids users providing information they may not know.

m Requires better mechanisms to measure the memory bandwidth to increase
the solution performance.

Improving HPC applications scheduling with predictions
based on automatically-collected historical data

Carlos Fenoy Garcia
carles.fenoy@bsc.es

September 2014

	Introduction
	Proposed Solution
	Evaluation
	Tests
	Conclusions

