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(QEELTEEEIIN  Introduction

Introduction

m Supercomputers have increased their resource number in last years

4

Resource management has become critical
to maximise its usage due to resource sharing

m The evolution pace of different components is not equal on all the parts:
Memory bandwidth evolves slower than processors speed.

m Existing resource selection mechanisms only focus on CPUS and Memory.
Other limiting resources exist

m Interconnect bandwidth
® Memory bandwidth
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Introduction

m Previous work exist to solve the memory bandwidth management issue. The
PhD thesis by Francesc Guim introduces the Less Consume selection policy,
that considers the memory bandwidth as a new resource.

m Less Consume was later validated, porting the policy to a real system and
analysing its behaviour.

m However, this port was done on MareNostrum 2, a different arquitecture to
the one currently available in MareNostrum 3.

m This policy requires users to specify the amount of memory bandwidth
needed by each job.



Motivation

m Users do not necessarily know the resources used by their applications.

m The impact of sharing resources on the applications perfomance.

m Improvement of monitoring systems enables the collection of multiple metrics
per job.

m The lack of trusty mechanisms for specifying resources.



Objectives

m Port previous work to a new arquitecture (MareNostrum 3).

m Enhance an existing resource selection policy with the usage of historical data
to predict the resource usage by jobs.

m Aware of shared resources (memory bandwidth)
m Historical data collected by a transparent monitoring system

I

Data is used in job scheduling

m Analyse the behaviour and the benefits of the policy
m Compare the policy with other existing policies
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Historical Performance Data (HPerf)

m The system proposed predicts the resources usage of an application based on
monitoring information gathered from previous equivalent executions.

m This system uses a user-provided tag to identify the kind of job.

m Combines existing technologies to improve the scheduling of applications:

m Resource selection policy aware of memory bandwidth (Less Consume)
m Monitoring system able to collect per job information (PerfMiner)
m Scheduler and resource management (Slurm)
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Historical Performance data (HPerf)
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m If at the submission time the tag is found, the average of the resource usage

will be used as the resource requirements for the job.
m If it is not found, the application will run with exclusive execution to favour

the monitoring.
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Evaluation

System analysis

In order be able to analyse the system, the following previous work was done:

m PerfMiner overhead analysis.

m Applications characterization.

m Study of the resources used by an application.
m Study of the time elapsed per iteration for each application.

m Workload generation:
A workload generator was chosen due to the unfeasibility of using real

production applications.
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PerfMiner study

Overhead analysis of PerfMiner with two sets of 100 jobs.

(CG class D with 64 tasks)
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Applications characterization and workload generation
Workload generation: applications characterization

Applications used for the generation of the workload characterized by their use of
memory bandwidth:
m High
m CGclass D
m Synthetic application with high memory bandwidth usage
m Medium
m CGclass C
m Low
m CGclass B
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Workload generation

The Lublin-Feitelson model was used to generate the workload.
m Generates 100 jobs
m Provides:

m Number of cpus (2-64)
m Job duration
m Job arrival time

Combining the workload with the applications list 2 final workloads were obtained:

Medium | High

high 54 84
medium 27 7
low 19 9

The time limit used for the jobs of the workload was the calculated with the
application running standalone.
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Description

Both workloads (HIGH & MEDIUM) were run with 3 different scheduling policies:
m ConsRes: Default Slurm scheduling policy. Considers only cpus and memory.

m LessC: Less Consume policy aware of the memory bandwidth usage per
application.

m HPerf: Less Consume + Historical Perfomance data. Automatically gets the
jobs resource consumption.

m With empty database.
m With preloaded database.

For each policy tests were run with:
m Unlimited grace time.

m Limited grace time. Kills the jobs after 5 minutes of the time limit.
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Finishing status

Job finishing status
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Slowdown
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Waiting time
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S50 Workload High

CPU usage
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Useful CPU usage

Useful cpu usage
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Job run time predictability

Job time predictability
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Conclusions

Conclusions

m The usage of the monitoring data for job scheduling results in better
allocation that:
m Improves the applications performance.
m Increases the useful cpu usage.
m Reduces the shared resources overload.
m Increases the waiting time.

m Avoids users providing information they may not know.

m Requires better mechanisms to measure the memory bandwidth to increase
the solution performance.
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