
Improving HPC applications scheduling with predictions
based on automatically-collected historical data

Carlos Fenoy Garćıa
carles.fenoy@bsc.es

September 2014



Index

1 Introduction
Introduction
Motivation
Objectives

2 Proposed Solution
HPerf

3 Evaluation
Overhead analysis
Applications characterization and workload generation

4 Tests
Description
Workload High

5 Conclusions

2 / 27



Introduction Introduction

Introduction

Supercomputers have increased their resource number in last years

⇓
Resource management has become critical

to maximise its usage due to resource sharing

The evolution pace of different components is not equal on all the parts:
Memory bandwidth evolves slower than processors speed.

Existing resource selection mechanisms only focus on CPUS and Memory.
Other limiting resources exist

Interconnect bandwidth
Memory bandwidth

3 / 27



Introduction Introduction

Introduction

Previous work exist to solve the memory bandwidth management issue. The
PhD thesis by Francesc Guim introduces the Less Consume selection policy,
that considers the memory bandwidth as a new resource.

Less Consume was later validated, porting the policy to a real system and
analysing its behaviour.

However, this port was done on MareNostrum 2, a different arquitecture to
the one currently available in MareNostrum 3.

This policy requires users to specify the amount of memory bandwidth
needed by each job.

4 / 27



Introduction Motivation

Motivation

Users do not necessarily know the resources used by their applications.

The impact of sharing resources on the applications perfomance.

Improvement of monitoring systems enables the collection of multiple metrics
per job.

The lack of trusty mechanisms for specifying resources.

5 / 27



Introduction Objectives

Objectives

Port previous work to a new arquitecture (MareNostrum 3).

Enhance an existing resource selection policy with the usage of historical data
to predict the resource usage by jobs.

Aware of shared resources (memory bandwidth)
Historical data collected by a transparent monitoring system

⇓
Data is used in job scheduling

Analyse the behaviour and the benefits of the policy

Compare the policy with other existing policies

6 / 27



Proposed Solution

Index

1 Introduction
Introduction
Motivation
Objectives

2 Proposed Solution
HPerf

3 Evaluation
Overhead analysis
Applications characterization and workload generation

4 Tests
Description
Workload High

5 Conclusions

7 / 27



Proposed Solution HPerf

Historical Performance Data (HPerf)

The system proposed predicts the resources usage of an application based on
monitoring information gathered from previous equivalent executions.

This system uses a user-provided tag to identify the kind of job.

Combines existing technologies to improve the scheduling of applications:

Resource selection policy aware of memory bandwidth (Less Consume)
Monitoring system able to collect per job information (PerfMiner)
Scheduler and resource management (Slurm)

8 / 27



Proposed Solution HPerf

Consumable Resources (ConsRes)

9 / 27



Proposed Solution HPerf

Less Consume (LessC)

9 / 27



Proposed Solution HPerf

Historical Performance data (HPerf)

If at the submission time the tag is found, the average of the resource usage
will be used as the resource requirements for the job.
If it is not found, the application will run with exclusive execution to favour
the monitoring.

9 / 27



Evaluation

Index

1 Introduction
Introduction
Motivation
Objectives

2 Proposed Solution
HPerf

3 Evaluation
Overhead analysis
Applications characterization and workload generation

4 Tests
Description
Workload High

5 Conclusions

10 / 27



Evaluation

System analysis

In order be able to analyse the system, the following previous work was done:

PerfMiner overhead analysis.

Applications characterization.

Study of the resources used by an application.
Study of the time elapsed per iteration for each application.

Workload generation:
A workload generator was chosen due to the unfeasibility of using real
production applications.

11 / 27



Evaluation Overhead analysis

PerfMiner study

Overhead analysis of PerfMiner with two sets of 100 jobs.
(CG class D with 64 tasks)

12 / 27



Evaluation Applications characterization and workload generation

Workload generation: applications characterization

Applications used for the generation of the workload characterized by their use of
memory bandwidth:

High

CG class D
Synthetic application with high memory bandwidth usage

Medium

CG class C

Low

CG class B

13 / 27



Evaluation Applications characterization and workload generation

Workload generation

The Lublin-Feitelson model was used to generate the workload.

Generates 100 jobs

Provides:

Number of cpus (2-64)
Job duration
Job arrival time

Combining the workload with the applications list 2 final workloads were obtained:

Medium High
high 54 84

medium 27 7
low 19 9

The time limit used for the jobs of the workload was the calculated with the
application running standalone.

14 / 27



Tests

Index

1 Introduction
Introduction
Motivation
Objectives

2 Proposed Solution
HPerf

3 Evaluation
Overhead analysis
Applications characterization and workload generation

4 Tests
Description
Workload High

5 Conclusions

15 / 27



Tests Description

Description

Both workloads (HIGH & MEDIUM) were run with 3 different scheduling policies:

ConsRes: Default Slurm scheduling policy. Considers only cpus and memory.

LessC: Less Consume policy aware of the memory bandwidth usage per
application.

HPerf: Less Consume + Historical Perfomance data. Automatically gets the
jobs resource consumption.

With empty database.
With preloaded database.

For each policy tests were run with:

Unlimited grace time.

Limited grace time. Kills the jobs after 5 minutes of the time limit.

16 / 27



Tests Workload High

HIGH: Unlimited time

CR

HPerf DB

17 / 27



Tests Workload High

HIGH: Limited grace time

CR

HPerf DB

18 / 27



Tests Workload High

Finishing status

Unlimited

Limited

19 / 27



Tests Workload High

Slowdown

Unlimited

Limited

20 / 27



Tests Workload High

Waiting time

Unlimited

Limited

21 / 27



Tests Workload High

CPU usage

Unlimited

Limited

22 / 27



Tests Workload High

Useful CPU usage

23 / 27



Tests Workload High

Job run time predictability

Unlimited

Limited

24 / 27



Conclusions

Index

1 Introduction
Introduction
Motivation
Objectives

2 Proposed Solution
HPerf

3 Evaluation
Overhead analysis
Applications characterization and workload generation

4 Tests
Description
Workload High

5 Conclusions

25 / 27



Conclusions

Conclusions

The usage of the monitoring data for job scheduling results in better
allocation that:

Improves the applications performance.
Increases the useful cpu usage.
Reduces the shared resources overload.
Increases the waiting time.

Avoids users providing information they may not know.

Requires better mechanisms to measure the memory bandwidth to increase
the solution performance.

26 / 27



Improving HPC applications scheduling with predictions
based on automatically-collected historical data

Carlos Fenoy Garćıa
carles.fenoy@bsc.es

September 2014


	Introduction
	Proposed Solution
	Evaluation
	Tests
	Conclusions

