
 SLURM User’s Group, 2014

Slurm 2014 User Group Rod Schultz, Bull
Martin Perry, Bull
Matthieu Hautreux, CEA
Yiannis Georgiou, Bull
Danny Auble, SchedMD
Morris Jette, SchedMD

Improving forwarding logic in Slurm

 SLURM User’s Group, 2014

Motivations

• Upcoming “multi-petaflop” systems will have thousand of
nodes interconnected by large scale high-speed
networks

• SLURM may have to pass by the same high-speed
network used by applications, hence there are two issues:

• Internal communications mechanisms in SLURM do not
take into account the underlying network topology

• Reverse communications (from slurmd to slurmctld) can
be an important bottleneck with larger number of nodes
[1]

[1]Yiannis Georgiou, Matthieu Hautreux: Evaluating Scalability and Efficiency of the
Resource and Job Management System on Large HPC Clusters. JSSPP 2012: 134-156

http://www.informatik.uni-trier.de/%7Eley/pers/hd/h/Hautreux:Matthieu.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/jsspp/jsspp2012.html#GeorgiouH12
http://www.informatik.uni-trier.de/%7Eley/db/conf/jsspp/jsspp2012.html#GeorgiouH12

 SLURM User’s Group, 2014

Reversed communications scalability bottleneck

• Performance Degradation visible in the increase of turnaround time
and stretching of the diagram (detailed analysis in [1]).

• Every node involved in a job sends its own completion message
directly to the controller :

• too many EPILOG_complete RPCs
• increase of processing time on the controller

 SLURM User’s Group, 2014

Goals of the project

• Re-factoring of the communication logic of Slurm in
order to provide partially deterministic direct and
reverse tree communications.
1) Increase performances by better handling the

mapping between the trees of communication
used by SLURM and the existing physical network
connections.

2) Provide the ability to aggregate messages directed
to the controller to limit the amount of RPCs to be
handled simultaneously when possible.

 SLURM User’s Group, 2014

Overview

• Two new features have been implemented.
• Route Plugin (already in 14.11)
• Messages Aggregation (to appear in 14.11 or 15.xx)

 SLURM User’s Group, 2014

Route Plugin

• Provides an opportunity to choose message forwarding
nodes based on patterns other than the TreeWidth
Parameter.

• Can off load some communication overhead from
slurmctld.
• A side effect may be more message hops and higher

latency.
• Plugin Implementations

• RoutePlugin=route/default
• RoutePlugin=route/topology

 SLURM User’s Group, 2014

Route Plugin -- default

• Splits a list of nodes to send a message into sublists
based on tree width.

• Sent the message to at most treewidth nodes.
• If the number of nodes is > treewidth, include in the

message header a list of node that the forwarding node
with send the message.

• Receiving node may also split its list into sublists.
• Message forwarding is identical to current implementation

 SLURM User’s Group, 2014

Route Plugin – default (2)

• Message Forwarding Between Nodes
• TreeWidth=3

 SLURM User’s Group, 2014

Route Plugin -- topology

• Split message list into sublists based on switch topology
in topology.conf (requires topology/tree)

• (message sent to first node on switch, and its message
list is all nodes that are reached by that switch)

• Messages forwarded to nodes that are ‘close’
• Slurmctld will usually forward to fewer nodes so will have

less overhead handling comm.

 SLURM User’s Group, 2014

Route Plugin – topology (2)

• # topology.conf
• SwitchName=root Switches=is[0-1]
• SwitchName=is0 Switches=gw[0-1]
• SwitchName=is1 Switches=gw[2-3]
• SwitchName=gw0 Nodes=trek[0-1]
• SwitchName=gw1 Nodes=trek[2-3]
• SwitchName=gw2 Nodes=trek[4-6]
• SwitchName=gw3 Nodes=trek[7-9]

 SLURM User’s Group, 2014

Route Plugin – topology (3)

• Message Forwarding Between Nodes

 SLURM User’s Group, 2014

Message Aggregation - Overview

• Resolves problem by aggregating epilog complete
messages into a smaller number of composite
messages, reducing the number of incoming TCP
connections to serve.

• Essentially the reverse of the message forwarding/fanout
mechanism used to reduce the load on the controller for
broadcast messages.

• Will be enhanced in the future to support additional
message types and destination nodes (not just the
controller), and to support message responses.

 SLURM User’s Group, 2014

Message Aggregation - How It Works

• If a compute node epilog script is configured (Epilog= parameter
in slurm.conf), or a job is killed (due to walltime or scancel) an
epilog complete message is generated on each compute node
for each job using that node.

• Without message aggregation:
• Each epilog complete message is sent directly to slurmctld on the management

node.
• With message aggregation:

• Epilog complete messages are routed through a series of message collector
nodes.

• On each collector node, epilog complete messages received during a defined
message collection window are collected and packaged inside a new
composite message type.

• When the window expires, the composite message is sent to the next collector
node on the route to slurmctld.

 SLURM User’s Group, 2014

Message Aggregation - How It Works

 SLURM User’s Group, 2014

Message Aggregation - How It Works

• The message collection window size = maximum number of
messages plus maximum elapsed time.
• A window expires when either the maximum messages or maximum time is

reached, whichever occurs first.
• A new window is started when the first epilog complete message or composite

message is received following expiration of the previous window.
• The routing used for message aggregation is provided by the

Route plugin.
• This determines the number and identity of the message collector nodes and the

number of message collection “hops” between each compute node and the
management node.

• When slurmctld receives a composite message, it extracts each
epilog complete message and processes it as if it had been sent
directly from the node that generated it.

 SLURM User’s Group, 2014

Message Aggregation Topology: Example

 SLURM User’s Group, 2014

Message Aggregation - Limitations

• The message aggregation feature involves a trade-off between
the amount of aggregation and message delay.

• A larger message collection window size and/or a larger
number of message collector nodes will increase the amount of
aggregation (reducing the load on the controller) but will also
increase message delay at collector nodes (delaying job
completion).

• The feature is recommended mainly for systems subject to the
job termination bottleneck problem. Experimentation may be
required to determine the optimum message collection window
size and number/layout of message collector nodes.

 SLURM User’s Group, 2014

Message Aggregation - Configuration

• Disabled by default. Enabled with new slurm.conf parameter
MsgAggregationParams.

• MsgAggregationParams defines the message collection window
size as a maximum number of messages and maximum time (in
milliseconds). Example:
MsgAggregationParams=WindowMsgs=10,WindowTime=100

• The Route plugin and associated parameters determine the
number and identity of the message collector nodes.
• Either: RoutePlugin=route/default with TreeWidth=n

With this option, the message aggregation route is the reverse of the message
forwarding route used for broadcast messages (messages sent from controller to
multiple compute nodes).

• or: RoutePlugin=route/topology withTopologyPlugin=topology/tree
and a topology.conf file.

With this option, the message aggregation route is defined by the node topology
configuration in topology.conf.

 SLURM User’s Group, 2014

Experimentation Testbed

• Performance evaluation experiments followed the same
guidelines as in [1].
• Emulated environment: 5040 emulated nodes upon 16 physical

nodes
• Light-ESP workload: 230 jobs with adaptable sizes according to

size of the cluster
• Tested 3 different scenarios with the following configurations:

1) No route plugin, no message aggregation
2) Route plugin/default with message aggregation 100msgs in

10msec
3) Route plugin/default with message aggregation 500msgs in

1sec

 SLURM User’s Group, 2014

Experimentation Results - TCP connections

• Measured number of EPILOG_complete messages during the
workload and number of COMPOSITE messages:

• A workload of 230 jobs that lasts about 1200sec produced about
115500 EPILOG complete messages

• The message aggregation technique diminished significantly
the number of TCP connections that the controller has to serve

Total number
of EPILOG

Total number
of Composites

Total nested
Composites

Average
EPILOG in
Composites

Median
EPILOG in
Composites

Max EPILOG
in Composites

NO MSG
Aggregation

115358

100MS in 10
msec

115486 35986 12570 3.2 4 29

500MS in 1s 115443 5162 1814 22,4 16 52

 SLURM User’s Group, 2014

Experimentation Results - Processing time
NO Message Aggregation

 SLURM User’s Group, 2014

Experimentation Results - Processing time
With Message Aggregation 10ms window

 SLURM User’s Group, 2014

Experimentation Results - Processing time
With Message Aggregation 1s window

 SLURM User’s Group, 2014

Discussion

• Absolutely no improvement at all in overall turnaround time of
the whole workload!!
• We can even observe a slight improvement in overall

turnaround time with no messages aggregation which is due
to the latency of composite messages creation

• But WHY no improvement with so much less messages to deal
with on the controller side?

• The reason is because the actual processing of composite
messages takes place by treating each EPILOG complete
message one by one so _slurm_rpc_epilog_complete is
still executed n times.

• Hence we need to create a new function for the processing of
composite messages in order to treat the epilog messages as
an array and gain the time of locks, node_state_save,etc.

 SLURM User’s Group, 2014

Conclusion and Future Works

• Re-factoring of forwarding logic in SLURM to consider the
network topology design
• Improves internal communications in general due to a better

mapping of SLURM communication trees upon the
underlying physical network

• Implementation of messages aggregation for reverse tree
communications
• Reduces the number of incoming TCP connections to serve

on the controller
• Still need to optimize the processing of those RPC

messages in groups.
• The logic of messages aggregation should be extended to

be used for all types of messages (squeue, sinfo demands,
node registration messages, etc)

 SLURM User’s Group, 2014

