
UCRL-MA-147996 REV 3

� ��� � � � � �	�
���
 ���	����� � ���	�������
����� �
�� � � �!

� "#�$"&%'
(�
(���

)#*,+�+�-/.1032,454�2
)768+:9<;=+�*3>@?@*3>A6

BDCFEHGJILKNMOEQPSRUT=VWI	GXGZY\[\]^EHM_M`Tba�M`cedXR/Y	G`M`TSKNfgchKiRHajdkcmlonpTLKqTSlrPsTtI\lra
uhv8w c

xzy|{~} �e�����j�e���

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

SLURM: Simple Linux Utility for Resource
Management

Morris Jette and Mark Grondona
Lawrence Livermore National Laboratory, USA

Abstract

Simple Linux Utility for Resource Management (SLURM) is an open source, fault-
tolerant, and highly scalable cluster management and job scheduling system for
Linux clusters of thousands of nodes. Components include machine status, parti-
tion management, job management, scheduling, and stream copy modules. This
paper presents an overview of the SLURM architecture and functionality.

1 Overview

Simple Linux Utility for Resource Management (SLURM)1 is a resource manage-
ment system suitable for use on large and small Linux clusters. After surveying [1]
resource managers available for Linux and finding none that were simple, highly
scalable, and portable to different cluster architectures and interconnects, the au-
thors set out to design a new system.

The resulting design is a resource management system with the following gen-
eral characteristics:

���:���:�O�:�������`� : SLURM is simple enough to allow motivated end users to un-
derstand its source code and add functionality. The authors will avoid the
temptation to add features unless they are of general appeal.�t�i�:�_���`�_���O�_� : SLURM is available to everyone and will remain free. Its
source code is distributed under the GNU General Public License [2].

1 A tip of the hat to Matt Groening and creators of Futurama, where Slurm is the most
popular carbonated beverage in the universe.

�����_�`���_�����:���`� : SLURM is written in the C language, with a GNU autoconf
configuration engine. While initially written for Linux, other Unix-like oper-
ating systems should be easy porting targets. SLURM also supports a general
purpose “plugin” mechanism, which permits a variety of different infrastruc-
tures to be easily supported. The SLURM configuration file specifies which
set of plugin modules should be used.� �¡�`�����5�_���`�:�:�i�¢�¡��£����:�_��£����¤�_� : SLURM currently supports UDP/IP-based
communication and the Quadrics Elan3 interconnect. Adding support for other
interconnects, including topography constraints, is straightforward and utilizes
the plugin mechanism described above.���:�����¥�_�����:���`� : SLURM is designed for scalability to clusters of thousands of
nodes. The SLURM controller for a cluster with 1000 nodes occupies on the
order of 2 MB of memory, and excellent performance has been demonstrated.
Jobs may specify their resource requirements in a variety of ways, including
requirements options and ranges.��¦����O�_� §����¥�_���_�¤�_� : SLURM can handle a variety of failure modes without
terminating workloads, including crashes of the node running the SLURM
controller. User jobs may be configured to continue execution despite the fail-
ure of one or more nodes on which they are executing. The user command
controlling a job, ¨ �¥�`� , may detach and reattach from the parallel tasks at any
time. Nodes allocated to a job are available for reuse as soon as the job(s)
allocated to that node terminate. If some nodes fail to complete job termina-
tion in a timely fashion because of hardware or software problems, only the
scheduling of those tardy nodes will be affected.���`�������¤���¥� : SLURM employs crypto technology to authenticate users to ser-
vices and services to each other with a variety of options available through the
plugin mechanism. SLURM does not assume that its networks are physically
secure, but it does assume that the entire cluster is within a single administra-
tive domain with a common user base.����� ¨ ������©�£��s�¡��� ¨ �`�������_��¦`�5���_��£���� : SLURM utilizes a simple configura-
tion file and minimizes distributed state. Its configuration may be changed at
any time without impacting running jobs. Heterogeneous nodes within a clus-
ter may be easily managed. SLURM interfaces are usable by scripts and its
behavior is highly deterministic.

1.1 What Is SLURM?

As a cluster resource manager, SLURM has three key functions. First, it allocates
exclusive and/or non-exclusive access to resources (compute nodes) to users for
some duration of time so they can perform work. Second, it provides a framework
for starting, executing, and monitoring work (normally a parallel job) on the set of
allocated nodes. Finally, it arbitrates conflicting requests for resources by manag-
ing a queue of pending work.

Users interact with SLURM through four command line utilities: ¨ �¥�`� for
submitting a job for execution and optionally controlling it interactively, ¨ �_�_�¤�����

for terminating a pending or running job, ¨�ª �:�_�:� for monitoring job queues,
and ¨ �¡��«�� for monitoring partition and overall system state. System adminis-
trators perform privileged operations through an additional command line utility,¨ �_�_���¥����� .

The central controller daemon, ¨ �������b���:��£ , maintains the global state and di-
rects operations. Compute nodes simply run a ¨ ���`���5£ daemon (similar to a remote
shell daemon) to export control to SLURM.

1.2 What SLURM Is Not

SLURM is not a comprehensive cluster administration or monitoring package.
While SLURM knows the state of its compute nodes, it makes no attempt to put
this information to use in other ways, such as with a general purpose event logging
mechanism or a back-end database for recording historical state. It is expected that
SLURM will be deployed in a cluster with other tools performing those functions.

SLURM is not a meta-batch system like Globus [3] or DPCS (Distributed Pro-
duction Control System) [4]. SLURM supports resource management across a sin-
gle cluster.

SLURM is not a sophisticated batch system. In fact, it was expressly designed
to provide high-performance parallel job management while leaving scheduling
decisions to an external entity. Its default scheduler implements First-In First-Out
(FIFO). An scheduler entity can establish a job’s initial priority through a plu-
gin. An external scheduler may also submit, signal, and terminate jobs as well as
reorder the queue of pending jobs via the API.

2 Architecture

As shown in Figure 1, SLURM consists of a ¨ ���`���5£ daemon running on each
compute node, a central ¨ ���`���b�i�:�_£ daemon running on a management node (with
optional fail-over twin), and five command line utilities: ¨ �¥�`� , ¨ �_�_�¤����� , ¨ �¡��«�� ,¨�ª �:�_��� , and ¨ �_�_���`����� , which can run anywhere in the cluster.

The entities managed by these SLURM daemons include nodes, the compute
resource in SLURM, partitions, which group nodes into logical disjoint sets, jobs,
or allocations of resources assigned to a user for a specified amount of time, and
job steps, which are sets of (possibly parallel) tasks within a job. Each job in the
priority-ordered queue is allocated nodes within a single partition. Once an alloca-
tion request fails, no lower priority jobs for that partition will be considered for a
resource allocation. Once a job is assigned a set of nodes, the user is able to initiate
parallel work in the form of job steps in any configuration within the allocation.
For instance, a single job step may be started that utilizes all nodes allocated to the
job, or several job steps may independently use a portion of the allocation.

Figure 2 further illustrates the interrelation of these entities as they are man-
aged by SLURM by showing a group of compute nodes split into two partitions.
Partition 1 is running one job, with one job step utilizing the full allocation of that

Fig. 1. SLURM architecture

job. The job in Partition 2 has only one job step using half of the original job al-
location. That job might initiate additional job steps to utilize the remaining nodes
of its allocation.

Figure 3 shows the subsystems that are implemented within the ¨ �������O£ and¨ �������b���:��£ daemons. These subsystems are explained in more detail below.

2.1 Slurmd

¨ �������5£ is a multi-threaded daemon running on each compute node and can be
compared to a remote shell daemon: it reads the common SLURM configuration
file and saved state information, notifies the controller that it is active, waits for
work, executes the work, returns status, then waits for more work. Because it initi-
ates jobs for other users, it must run as user root. It also asynchronously exchanges
node and job status with ¨ �i�����b�i����£ . The only job information it has at any given
time pertains to its currently executing jobs. ¨ �����i�5£ has five major components:

��¬�����­��¡�:�D����£¢®¥�_���������¥� ¨ �`���`¯¤���_� ¨ : Respond to controller requests for
machine and job state information and send asynchronous reports of some
state changes (e.g., ¨ �������5£ startup) to the controller.��°��¡�¤�����t±`²��:�����¤�i�_� : Start, manage, and clean up after a set of processes (typ-
ically belonging to a parallel job) as dictated by the ¨ �������b���:��£ daemon or
an ¨ ���`� or ¨ ���_�¤�_��� command. Starting a process may include executing a
prolog program, setting process limits, setting real and effective uid, estab-

Partition 1 Partition 2

Job

Job

node node

node node

node node

Job
Step

node node

node

node

node

node

Job
Step

Fig. 2. SLURM entities: nodes, partitions, jobs, and job steps

lishing environment variables, setting working directory, allocating intercon-
nect resources, setting core file paths, initializing stdio, and managing process
groups. Terminating a process may include terminating all members of a pro-
cess group and executing an epilog program.���_�`���`����³`�_���¢�`���`¯5�¥�_� : Allow handling of stderr, stdout, and stdin of remote
tasks. Job input may be redirected from a single file or multiple files (one per
task), an ¨ �¥�`� process, or /dev/null. Job output may be saved into local files
or returned to the ¨ �¥�¥� command. Regardless of the location of stdout/err, all
job output is locally buffered to avoid blocking local tasks.�t®��_�¢³��_���`����� : Allow asynchronous interaction with the Remote Execution
environment by propagating signals or explicit job termination requests to any
set of locally managed processes.

2.2 Slurmctld

Most SLURM state information exists in ¨ �������b���:��£ , also known as the controller.¨ �������Z�i�:��£ is multi-threaded with independent read and write locks for the var-
ious data structures to enhance scalability. When ¨ �����i�b�i�:��£ starts, it reads the
SLURM configuration file and any previously saved state information. Full con-
troller state information is written to disk periodically, with incremental changes
written to disk immediately for fault tolerance. ¨ �����i�b�i�:��£ runs in either master
or standby mode, depending on the state of its fail-over twin, if any. ¨ �i�����b�i����£
need not execute as user root. In fact, it is recommended that a unique user entry be
created for executing ¨ �������b���:��£ and that user must be identified in the SLURM
configuration file as �`��������´ ¨ ��� . ¨ �����i�b�i�:��£ has three major components:

��µ��¥£��¶¬��_�:�_·���� : Monitors the state of each node in the cluster. It polls ¨ �������5£ s
for status periodically and receives state change notifications from ¨ �������O£

Partition ManagerNode Manager

slurmctld
srunUser:

slurmd

Machine
Status

Job
Control

Remote
Execution

Globus and/or
Metascheduler

(optional)

Stream Copy

Job Manager

Job
Status

Fig. 3. SLURM architecture - subsystems

daemons asynchronously. It ensures that nodes have the prescribed configura-
tion before being considered available for use.

�����_�`�¤���¤�i�_�D¬��_����·���� : Groups nodes into non-overlapping sets called parti-
tions. Each partition can have associated with it various job limits and access
controls. The Partition Manager also allocates nodes to jobs based on node and
partition states and configurations. Requests to initiate jobs come from the Job
Manager. ¨ �_�_�`�`����� may be used to administratively alter node and partition
configurations.

�t®¥����¬����:��·���� : Accepts user job requests and places pending jobs in a priority-
ordered queue. The Job Manager is awakened on a periodic basis and when-
ever there is a change in state that might permit a job to begin running, such as
job completion, job submission, partition up transition, node up transition, etc.
The Job Manager then makes a pass through the priority-ordered job queue.
The highest priority jobs for each partition are allocated resources as possible.
As soon as an allocation failure occurs for any partition, no lower-priority jobs
for that partition are considered for initiation. After completing the schedul-
ing cycle, the Job Manager’s scheduling thread sleeps. Once a job has been
allocated resources, the Job Manager transfers necessary state information to
those nodes, permitting it to commence execution. When the Job Manager de-
tects that all nodes associated with a job have completed their work, it initiates
cleanup and performs another scheduling cycle as described above.

2.3 Command Line Utilities

The command line utilities offer users access to remote execution and job control.
They also permit administrators to dynamically change the system configuration.
These commands use SLURM APIs that are directly available for more sophisti-
cated applications.� ¨ �_�_�¤�_�`� : Cancel a running or a pending job or job step, subject to authenti-

cation and authorization. This command can also be used to send an arbitrary
signal to all processes on all nodes associated with a job or job step.� ¨ �_�_���`����� : Perform privileged administrative commands such as bringing down
a node or partition in preparation for maintenance. Many ¨ �_�_���¥����� functions
can only be executed by privileged users.� ¨ �¡��«�� : Display a summary of partition and node information. An assortment
of filtering and output format options are available.� ¨iª �:�_�:� : Display the queue of running and waiting jobs and/or job steps. A
wide assortment of filtering, sorting, and output format options are available.� ¨ �¥�`� : Allocate resources, submit jobs to the SLURM queue, and initiate par-
allel tasks (job steps). Every set of executing parallel tasks has an associated¨ �¥�`� that initiated it and, if the ¨ ���`� persists, manages it. Jobs may be sub-
mitted for later execution (e.g., batch), in which case ¨ �¥�¥� terminates after
job submission. Jobs may also be submitted for interactive execution, where¨ �¥�`� keeps running to shepherd the running job. In this case, ¨ �¥�`� negoti-
ates connections with remote ¨ �������5£ s for job initiation and to get stdout and
stderr, forward stdin,2 and respond to signals from the user. ¨ �¥�`� may also be
instructed to allocate a set of resources and spawn a shell with access to those
resources.

2.4 Plugins

In order to simplify the use of different infrastructures, SLURM uses a general pur-
pose plugin mechanism. A SLURM plugin is a dynamically linked code object that
is loaded explicitly at run time by the SLURM libraries. A plugin provides a cus-
tomized implementation of a well-defined API connected to tasks such as authen-
tication, interconnect fabric, and task scheduling. A common set of functions is de-
fined for use by all of the different infrastructures of a particular variety. For exam-
ple, the authentication plugin must define functions such as ¨ ������� �_���¥­ �i���`�����
to create a credential, ¨ �i����� �����¥­ ¯��_�¤�i«¥� to verify a credential to approve or
deny authentication, ¨ ������� �_���¥­ ·���� ���i£ to get the uid associated with a spe-
cific credential, etc. It also must define the data structure used, a plugin type, a
plugin version number, etc. When a SLURM daemon is initiated, it reads the con-
figuration file to determine which of the available plugins should be used. For ex-
ample AuthType=auth/authd says to use the plugin for authd based authentication
and PluginDir=/usr/local/lib identifies the directory in which to find the plugin.

2 ¸º¹¡»¡¼ command line options select the stdin handling method, such as broadcast to all
tasks, or send only to task 0.

2.5 Communications Layer

SLURM presently uses Berkeley sockets for communications. However, we antic-
ipate using the plugin mechanism to permit use of other communications layers.
At LLNL we are using an Ethernet for SLURM communications and the Quadrics
Elan switch exclusively for user applications. The SLURM configuration file per-
mits the identification of each node’s hostname as well as its name to be used for
communications. In the case of a control machine known as mcri to be commu-
nicated with using the name emcri (say to indicate an Ethernet communications
path), this is represented in the configuration file as ControlMachine=mcri Con-
trolAddr=emcri. The name used for communication is the same as the hostname
unless otherwise specified.

Internal SLURM functions pack and unpack data structures in machine inde-
pendent format. We considered the use of XML style messages, but we felt this
would adversely impact performance (albeit slightly). If XML support is desired,
it is straightforward to perform a translation and use the SLURM APIs.

2.6 Security

SLURM has a simple security model: any user of the cluster may submit parallel
jobs to execute and cancel his own jobs. Any user may view SLURM configura-
tion and state information. Only privileged users may modify the SLURM config-
uration, cancel any job, or perform other restricted activities. Privileged users in
SLURM include the users root and SlurmUser (as defined in the SLURM config-
uration file). If permission to modify SLURM configuration is required by others,
set-uid programs may be used to grant specific permissions to specific users.

Communication Authentication. Historically, inter-node authentication has been
accomplished via the use of reserved ports and set-uid programs. In this scheme,
daemons check the source port of a request to ensure that it is less than a certain
value and thus only accessible by root. The communications over that connection
are then implicitly trusted. Because reserved ports are a limited resource and set-
uid programs are a possible security concern, we have employed a credential-based
authentication scheme that does not depend on reserved ports. In this design, a
SLURM authentication credential is attached to every message and authoritatively
verifies the uid and gid of the message originator. Once recipients of SLURM
messages verify the validity of the authentication credential, they can use the uid
and gid from the credential as the authoritative identity of the sender.

The actual implementation of the SLURM authentication credential is rele-
gated to an “auth” plugin. We presently have implemented three functional au-
thentication plugins: authd[5], Munge, and none. The “none” authentication type
employs a null credential and is only suitable for testing and networks where se-
curity is not a concern. Both the authd and Munge implementations employ cryp-
tography to generate a credential for the requesting user that may then be author-
itatively verified on any remote nodes. However, authd assumes a secure network

and Munge does not. Other authentication implementations, such as a credential
based on Kerberos, should be easy to develop using the auth plugin API.

Job Authentication. When resources are allocated to a user by the controller, a
“job step credential” is generated by combining the uid, job id, step id, the list
of resources allocated (nodes), and the credential lifetime and signing the result
with the ¨ �����i�b�i�:��£ private key. This credential grants the user access to allocated
resources and removes the burden from ¨ �����i�5£ to contact the controller to verify
requests to run processes. ¨ ���`���5£ verifies the signature on the credential against
the controller’s public key and runs the user’s request if the credential is valid.
Part of the credential signature is also used to validate stdout, stdin, and stderr
connections from ¨ �����i�5£ to ¨ ���`� .
Authorization. Access to partitions may be restricted via a RootOnly flag. If this
flag is set, job submit or allocation requests to this partition are only accepted if
the effective uid originating the request is a privileged user. A privileged user may
submit a job as any other user. This may be used, for example, to provide specific
external schedulers with exclusive access to partitions. Individual users will not
be permitted to directly submit jobs to such a partition, which would prevent the
external scheduler from effectively managing it. Access to partitions may also be
restricted to users who are members of specific Unix groups using a AllowGroups
specification.

2.7 Example: Executing a Batch Job

In this example a user wishes to run a job in batch mode, in which ¨ �¥�`� returns
immediately and the job executes in the background when resources are available.
The job is a two-node run of script containing mping, a simple MPI application.
The user submits the job:

¨ �¥�`��½`½������5��­¢½¥½��:�¥£�� ¨�¾ ½`½i�`�����:� ¨=¾ �:�¤�¡��·À¿ ¨ ­
The script �:���p��·À¿ ¨ ­ contains:ÁÀÂÄÃ ���p� Ã ¨ ­¨ �¥�`� ­:� ¨ �¥�:���¤�¨ �¥�`�t�:���p��·~Å¢Å¡Æ�Ç�È`É`Ê¥Ë

The initial ¨ �¥�`� command authenticates the user to the controller and submits
the job request. The request includes the ¨ ���`� environment, current working di-
rectory, and command line option information. By default, stdout and stderr are
sent to files in the current working directory and stdin is copied from

Ã £`��¯ Ã �¥�O�`� .
The controller consults the Partition Manager to test whether the job will ever

be able to run. If the user has requested a non-existent partition, a non-existent
constraint, etc., the Partition Manager returns an error and the request is discarded.
The failure is reported to ¨ �¥�`� which informs the user and exits, for example:

¨ �¥�`�FÌÍ���`�����ÀÌ@´��:���O�¥�t���Î���`�¥���_��������� ¨ �_���O�_� ¨ ÌÍ�¡��¯������i£t�:���`�5���¤���_�t�:���¤�
On successful submission, the controller assigns the job a unique SLURM job

id, adds it to the job queue, and returns the job’s job id to ¨ �¥�`� which reports this
to user and exits, returning success to the user’s shell:

¨ �¥�`�FÌÍÏ`�_�¤�i£¶Ç ¾�¨ �`�_�s�¡�`���¥£
The controller awakens the Job Manager, which tries to run jobs starting at the

head of the priority ordered job queue. It finds job 42 and makes a successful re-
quest to the Partition Manager to allocate two nodes from the default (or requested)
partition: dev6 and dev7.

The Job Manager then sends a request to the ¨ ���`���5£ on the first node in the job
dev6 to execute the script specified on the user’s command line.3 The Job Manager
also sends a copy of the environment, current working directory, stdout and stderr
location, along with other options. Additional environment variables are appended
to the user’s environment before it is sent to the remote ¨ �������O£ detailing the job’s
resources, such as the SLURM job id (42) and the allocated nodes (dev[6-7]).

The remote ¨ �������5£ establishes the new environment, executes a SLURM pro-
log program (if one is configured) as user root, and executes the job script (or com-
mand) as the submitting user. The ¨ �¥�¥� within the job script detects that it is run-
ning with allocated resources from the presence of a �¥Ð_´�°`¬ ®`��Ñ���Ò environment
variable. ¨ �¥�`� connects to ¨ �i�����b�i����£ to request a job step to run on all nodes of
the current job. ¨ �������Z�i�:��£ validates the request and replies with a job step cre-
dential and switch resources. ¨ ���`� then contacts ¨ �i�����5£ s running on both dev6
and dev7, passing the job step credential, environment, current working directory,
command path and arguments, and interconnect information. The ¨ ���`���5£ s verify
the valid job step credential, connect stdout and stderr back to ¨ ���`� , establish the
environment, and execute the command as the submitting user.

Unless instructed otherwise by the user, stdout and stderr are copied to a file in
the current working directory by ¨ ���`� :Ã �:���¥­ Ã ��� Ã ��Ó�£ Ã ¨ ���¥����½iÇ ¾ ¿Ä���`�

The user may examine output files at any time if they reside in a globally
accessible directory. In this example ¨ �i������½_Ç ¾ ¿Ä�_��� would contain the output of
the job script’s two commands (hostname and mping):

£`��¯�Ë£`��¯�ÊÅW���¡��·���£ ÆSÌ Å��`�`��� ¨ ÉS¿ÄÔ`Èt�:�`��� ÆS¿ºÅ�Õ¶¬¥Ñ Ã ¨ÅW���¡��·���£ ÆSÌ ¾ �`�`��� ¨ ÉS¿ÄÔ ¾ �:�`��� ÆS¿ÄÔ`È¶¬¥Ñ Ã ¨ÅW���¡��·���£ ÆSÌ ÇÎ�`�`��� ¨ ÉS¿ ¾ Êt�:�`��� ÆS¿ÄÊ`Ë¶¬¥Ñ Ã ¨
3 Had the user specified an executable file rather than a job script, an ¸º¹¡»¡¼ program would

be initiated on the first node and ¸º¹¡»�¼ would initiate the executable with the desired task
distribution.

ÅW���¡��·��¥£ ÆÖÌ È¶���`��� ¨ ÉS¿ÄÔ`Õt�:�¥�:� Åb¿×Ç�È¶¬¥Ñ Ã ¨¿`¿¥¿ÅW���¡��·��¥£ ÆÖÌØÅ¡Æ�Ç�È`É`Ê¥Ë=���`��� ¨ Ç�Ë`È ¾ ¿ÄÕ`Ê��:�¥�:� ¾`¾ ÔS¿ÄÕ¤ÅÙ¬¥Ñ Ã ¨
When the tasks complete execution, ¨ ���`� is notified by ¨ �i�����5£ of each task’s

exit status. ¨ �¥�`� reports job step completion to the Job Manager and exits. ¨ �����i�5£
detects when the job script terminates and notifies the Job Manager of its exit status
and begins cleanup. The Job Manager directs the ¨ �������O£ s formerly assigned to the
job to run the SLURM epilog program (if one is configured) as user root. Finally,
the Job Manager releases the resources allocated to job 42 and updates the job
status to complete. The record of a job’s existence is eventually purged.

2.8 Example: Executing an Interactive Job

In this example a user wishes to run the same mping command in interactive mode,
in which ¨ �¥�`� blocks while the job executes and stdout/stderr of the job are copied
onto stdout/stderr of ¨ �¥�`� . The user submits the job, this time without the �:���O��­
option:

¨ �¥�`��½`½����¥£�� ¨=¾ ½`½��`�`���:� ¨=¾ �:���p��·~Å�Å�Æ_Ç�È`É`Ê`Ë
The ¨ �¥�`� command authenticates the user to the controller and makes a re-

quest for a resource allocation and job step. The Job Manager responds with a list
of nodes, a job step credential, and interconnect resources on successful alloca-
tion. If resources are not immediately available, the request terminates or blocks
depending on user options.

If the request is successful, ¨ ���`� forwards the job run request to the assigned¨ �������O£ s in the same manner as the ¨ �¥�`� in the batch job script. In this case, the
user sees the program output on stdout of ¨ ���`� :
ÅW���¡��·��¥£ ÆÖÌ ÅW���`��� ¨ ÉS¿ÄÔ`Èt�:�¥�:� ÆS¿ºÅ�Õ¶¬¥Ñ Ã ¨ÅW���¡��·��¥£ ÆÖÌ ¾ ���`��� ¨ ÉS¿ÄÔ ¾ �:�¥�:� ÆS¿ÄÔ`È¶¬¥Ñ Ã ¨ÅW���¡��·��¥£ ÆÖÌ Ç ���`��� ¨ ÉS¿ ¾ Êt�:�¥�:� ÆS¿ÄÊ`Ë¶¬¥Ñ Ã ¨ÅW���¡��·��¥£ ÆÖÌ È¶���`��� ¨ ÉS¿ÄÔ`Õt�:�¥�:� Åb¿×Ç�È¶¬¥Ñ Ã ¨¿`¿¥¿ÅW���¡��·��¥£ ÆÖÌØÅ¡Æ�Ç�È`É`Ê¥Ë=���`��� ¨ Ç�Ë`È ¾ ¿ÄÕ`Ê��:�¥�:� ¾`¾ ÔS¿ÄÕ¤ÅÙ¬¥Ñ Ã ¨
When the job terminates, ¨ ���`� receives an EOF (End Of File) on each stream

and closes it, then receives the task exit status from each ¨ �����i�5£ . The ¨ �¥�`� pro-
cess notifies ¨ �������b���:��£ that the job is complete and terminates. The controller
contacts all ¨ �������O£ s allocated to the terminating job and issues a request to run
the SLURM epilog, then releases the job’s resources.

Most signals received by ¨ �¥�`� while the job is executing are transparently
forwarded to the remote tasks. SIGINT (generated by Control-C) is a special case
and only causes ¨ ���`� to report remote task status unless two SIGINTs are received
in rapid succession. SIGQUIT (Control- Ú) is another special case. SIGQUIT forces
termination of the running job.

3 Slurmctld Design

¨ �������b���:��£ is modular and multi-threaded with independent read and write locks
for the various data structures to enhance scalability. The controller includes the
following subsystems: Node Manager, Partition Manager, and Job Manager. Each
of these subsystems is described in detail below.

3.1 Node Management

The Node Manager monitors the state of nodes. Node information monitored in-
cludes:

� Count of processors on the node� Size of real memory on the node� Size of temporary disk storage� State of node (RUN, IDLE, DRAINED, etc.)� Weight (preference in being allocated work)� Feature (arbitrary description)� IP address

The SLURM administrator can specify a list of system node names using a
numeric range in the SLURM configuration file or in the SLURM tools (e.g.,
“NodeName=linux[001-512] CPUs=4 RealMemory=1024 TmpDisk=4096
Weight=4 Feature=Linux”). These values for CPUs, RealMemory, and TmpDisk
are considered to be the minimal node configuration values acceptable for the node
to enter into service. The ¨ ���`���5£ registers whatever resources actually exist on
the node, and this is recorded by the Node Manager. Actual node resources are
checked on ¨ �������5£ initialization and periodically thereafter. If a node registers
with less resources than configured, it is placed in DOWN state and the event
logged. Otherwise, the actual resources reported are recorded and possibly used
as a basis for scheduling (e.g., if the node has more RealMemory than recorded in
the configuration file, the actual node configuration may be used for determining
suitability for any application; alternately, the data in the configuration file may be
used for possibly improved scheduling performance). Note the node name syntax
with numeric range permits even very large heterogeneous clusters to be described
in only a few lines. In fact, a smaller number of unique configurations can provide
SLURM with greater efficiency in scheduling work.

Weight is used to order available nodes in assigning work to them. In a het-
erogeneous cluster, more capable nodes (e.g., larger memory or faster processors)
should be assigned a larger weight. The units are arbitrary and should reflect the
relative value of each resource. Pending jobs are assigned the least capable nodes
(i.e., lowest weight) that satisfy their requirements. This tends to leave the more
capable nodes available for those jobs requiring those capabilities.

Feature is an arbitrary string describing the node, such as a particular soft-
ware package, file system, or processor speed. While the feature does not have a

numeric value, one might include a numeric value within the feature name (e.g.,
“1200MHz” or “16GB Swap”). If the nodes on the cluster have disjoint features
(e.g., different “shared” file systems), one should identify these as features (e.g.,
“FS1”, “FS2”, etc.). Programs may then specify that all nodes allocated to it should
have the same feature, but that any of the specified features are acceptable (e.g.,
“ ÛÝÜ�Þ�ß×à5áiÜXâãÛåäFæ¥ç ÛåäÖèOç Ûåäré ” means the job should be allocated nodes that all
have the feature “FS1” or they all have feature “FS2,” etc.).

Node records are kept in an array with hash table lookup. If nodes are given
names containing sequence numbers (e.g., “lx01”, “lx02”, etc.), the hash table
permits specific node records to be located very quickly; therefore, this is our rec-
ommended naming convention for larger clusters.

An API is available to view any of this information and to update some node
information (e.g., state). APIs designed to return SLURM state information per-
mit the specification of a time stamp. If the requested data has not changed since
the time stamp specified by the application, the application’s current information
need not be updated. The API returns a brief “No Change” response rather than re-
turning relatively verbose state information. Changes in node configurations (e.g.,
node count, memory, etc.) or the nodes actually in the cluster should be reflected
in the SLURM configuration files. SLURM configuration may be updated without
disrupting any jobs.

3.2 Partition Management

The Partition Manager identifies groups of nodes to be used for execution of user
jobs. One might consider this the actual resource scheduling component. Data as-
sociated with a partition includes:

� Name� RootOnly flag to indicate that only users root or ���i������´ ¨ ��� may allocate
resources in this partition (for any user)� List of associated nodes� State of partition (UP or DOWN)� Maximum time limit for any job� Minimum and maximum nodes allocated to any single job� List of groups permitted to use the partition (defaults to ALL)� Shared access (YES, NO, or FORCE)� Default partition (if no partition is specified in a job request)

It is possible to alter most of this data in real-time in order to affect the schedul-
ing of pending jobs (currently executing jobs would not be affected). This infor-
mation is confined to the controller machine(s) for better scalability. It is used by
the Job Manager (and possibly an external scheduler), which either exist only on
the control machine or communicate only with the control machine.

The nodes in a partition may be designated for exclusive or non-exclusive use
by a job. A ¨ ­:�����¥£ value of YES indicates that jobs may share nodes on request.

A ¨ ­:�_���¥£ value of NO indicates that jobs are always given exclusive use of al-
located nodes. A ¨ ­������¥£ value of FORCE indicates that jobs are never ensured
exclusive access to nodes, but SLURM may initiate multiple jobs on the nodes
for improved system utilization and responsiveness. In this case, job requests for
exclusive node access are not honored. Non-exclusive access may negatively im-
pact the performance of parallel jobs or cause them to fail upon exhausting shared
resources (e.g., memory or disk space). However, shared resources may improve
overall system utilization and responsiveness. The proper support of shared re-
sources, including enforcement of limits on these resources, entails a substantial
amount of effort, which we are not presently planning to expend. However, we
have designed SLURM so as to not preclude the addition of such a capability at a
later time if so desired. Future enhancements could include constraining jobs to a
specific CPU count or memory size within a node, which could be used to effec-
tively space-share individual nodes. The Partition Manager will allocate nodes to
pending jobs on request from the Job Manager.

Submitted jobs can specify desired partition, time limit, node count (minimum
and maximum), CPU count (minimum) task count, the need for contiguous node
assignment, and an explicit list of nodes to be included and/or excluded in its allo-
cation. Nodes are selected so as to satisfy all job requirements. For example, a job
requesting four CPUs and four nodes will actually be allocated eight CPUs and
four nodes in the case of all nodes having two CPUs each. The request may also
indicate node configuration constraints such as minimum real memory or CPUs
per node, required features, shared access, etc. Overall there are 13 different pa-
rameters that may identify resource requirements for a job.

Nodes are selected for possible assignment to a job based on the job’s config-
uration requirements (e.g., partition specification, minimum memory, temporary
disk space, features, node list, etc.). The selection is refined by determining which
nodes are up and available for use. Groups of nodes are then considered in order
of weight, with the nodes having the lowest Weight preferred. Finally, the physical
location of the nodes is considered.

Bit maps are used to indicate which nodes are up, idle, associated with each
partition, and associated with each unique configuration. This technique permits
scheduling decisions to normally be made by performing a small number of tests
followed by fast bit map manipulations. If so configured, a job’s resource require-
ments would be compared with the (relatively small number of) node configu-
ration records, each of which has an associated bit map. Usable node configura-
tion bitmaps would be ANDed with the selected partitions bit map ANDed with
the UP node bit map and possibly ANDed with the IDLE node bit map (this last
test depends on the desire to share resources). This method can eliminate tens of
thousands of individual node configuration comparisons that would otherwise be
required in large heterogeneous clusters.

The actual selection of nodes for allocation to a job is currently tuned for the
Quadrics interconnect. This hardware supports hardware message broadcast only
if the nodes are contiguous. If a job is not allocated contiguous nodes, a slower
software based multi-cast mechanism is used. Jobs will be allocated continuous

nodes to the extent possible (in fact, contiguous node allocation may be specified
as a requirement on job submission). If contiguous nodes cannot be allocated to a
job, it will be allocated resources from the minimum number of sets of contiguous
nodes possible. If multiple sets of contiguous nodes can be allocated to a job, the
one that most closely fits the job’s requirements will be used. This technique will
leave the largest continuous sets of nodes intact for jobs requiring them.

The Partition Manager builds a list of nodes to satisfy a job’s request. It also
caches the IP addresses of each node and provides this information to ¨ �¥�`� at job
initiation time for improved performance.

The failure of any node to respond to the Partition Manager only affects jobs
associated with that node. In fact, a job may indicate it should continue executing
even if allocated nodes cease responding. In this case, the job needs to provide
for its own fault tolerance. All other jobs and nodes in the cluster will continue to
operate after a node failure. No additional work is allocated to the failed node, and
it will be pinged periodically to determine when it resumes responding. The node
may then be returned to service (depending on the °����¥�`�¥��§��`�¥���`¯¤�¥��� parameter
in the SLURM configuration).

3.3 Configuration

A single configuration file applies to all SLURM daemons and commands. Most of
this information is used only by the controller. Only the host and port information
is referenced by most commands. A sample configuration file is shown in Table 1.

3.4 Job Manager

There are a multitude of parameters associated with each job, including:

� Job name� Uid� Job id� Working directory� Partition� Priority� Node constraints (processors, memory, features, etc.)

Job records have an associated hash table for rapidly locating specific records.
They also have bit maps of requested and/or allocated nodes (as described above).

The core functions supported by the Job Manager include:

� Request resource (job may be queued)� Reset priority of a job� Status job (including node list, memory and CPU use data)� Signal job (send arbitrary signal to all processes associated with a job)� Terminate job (remove all processes)

êê�ëíìïîHðHñHò`óíòïôQõïóUöïñï÷Høïî×ù õïúíûíüê`ýí÷HôíþHúíø ÿ��íúíþíû��HúHòê��HìíôHò/ÿ���� ó	��
íó��	�	���

íúíûíôHøHúíñ	�HìUõ þ�� ûHò	�Hñ����	���	��
íúíûíôíøUúíñíý	�	�Hø	�Uòíñ����	���	�
�HìUõ �U÷íð�
HúïûHôíøHúHñíñHòïø	�Uñ����	�	�����HìUõ �H÷Hðíý��	�íø��HòHñ������	���ýí÷Hôíþ��	�íðUò���� ìï÷HôíþUóíìï÷Hôíþ����
�íð�� ñHú��	�UóíòíôUõïóUöïñí÷íøïîQóíòíð�� ñHú��
�HìUö ôUëHõ þUò��H÷Hñíò	���
��� øUöïô��íú	 �!��	��
�"	"�#	

$UìUö þ��HìHöíò��%� �
$UòHìïøHô	 HòHìïô�! ûíôUòïø�&Hìíñ	��
��
! ûUìHõïô�� &Uò�'�� î�� ô	�%� �	�
�íú	 �
íøHò��UòïûHô�� ìHñ�(Hø�� &UìïôUò�)Hò	�	�UóíòïôQõïóUöïñï÷HøïîQóïðíø�� &UìïôHò ù �Qò��
�íú	 �
íøHò��UòïûHô�� ìHñ�(H÷	 Hñ��ïõ	
íòïøHô�� ü��ïõíìïôUò��HóHòïôQõïóHöíñï÷HøïîUóíðí÷� Hñ��íõ ù õïòïøHô
)��ïñíñ�*Uì�� ô	��#	�
(Hñí÷	��� û	��� ø��Hóï÷Qö øUóíñ��+ HóUöïñï÷Høïî
(íø�� úíø�� ô�� ,Uò��Hóí÷UöïøHóíñHúHõíìíñíóUöïñí÷íøïîQóíòíôUõïóíðíø�� úïø�� ô��
(íøUúíñHú��	�UóíòíôUõïóUöïñí÷íøïîQóïðHøHúíñHú��
-Uòíôí÷Høíû	�UúíëHòïø	&��ïõíò����ëíñí÷íøíîQõ ôUñ����Hò� H÷	���	.ëíñí÷íøíîQõ ôUñ���'Hú������ïñíò��Uó�&UìïøHóíôïîUðHóHöíñï÷HøïîQõïôHñ	� ù ñHú��ëíñí÷íøíîQõ ôUñ���(�� �����ïñíò��Uó�&UìïøHóíøí÷HûHóHöíñï÷HøïîQõïôHñ	� ù ð�� �ëíñí÷íøíîQõ ôUñ���(HúïøHô	��/	�	���ëíñí÷íøíîQõ ôUñ������ îQòíúí÷íô	�%� ���ëíñí÷íøíî��	�Uò� H÷	�	��.ëíñí÷íøíî��	'Uú������ ñHò��Uó�&HìíøHóíôïîHðUóHöíñï÷íøíî�� ù ñíú	�ëíñí÷íøíî��	(�� ����� ñHò��Uó�&HìíøHóíøí÷íûUóHöíñï÷íøíî�� ù ð��+�ëíñí÷íøíî��	(UúïøHô	��/��	��#ëíñí÷íøíî��HëíðHúHúíñ���� ø��Hó�&UìïøUóïôïîUðHóUöïñï÷Høïî�� ù öïðHúHúíñëíñí÷íøíî��	��� îQòíúï÷Hô	�%� �	�ëíñí÷íøíî	0Qöíòïø��Uöïñí÷íøíîëïôUìïôUòíëíì	&Hò	'HúHõíìïô�� úïû��HóíôïîHðUóHöíñï÷íøíî ù ö ôHìíôHò
�ïîUð	�Uë��HóíôïîUðêê21Uú	�Hò�
íúíûíü��+�í÷HøHìïô�� úíûUöê
1Uú	�Hò�1Uì îQò����	�	�Hý�0�'	�3�ïîUð	���ïö �����+
	#	4	.�(íøHúUõíö����
2-QòíìHñ��HòïîUúíø	�	���	�	.�42*Uò�� �Hþíô	�%�

1Uú	�Hò�1Uì îQò��Uñ��65 �	���	�	7��	���	��8�1Qú��Uòïý	���íø��Hòíñ	�65 �	�	���	7��	�	����8�ëíôHìïôUò�����-Hý�! 1��	�
1Uú	�Hò�1Uì îQò��Uñ��65 �	���	#	7�4	���	��8�1Qú��Uòïý	���íø��Hòíñ	�65 �	�	��#	7�4	�	����8
1Uú	�Hò�1Uì îQò����	�	�Hý�0�'	�9
�(0Qö���#	�:-Qòíìíñ	�HòïîUúïø��	��.��	;�
2*Uò�� �íþHô	��.��2�HòHìïôí÷HøHò	��� ���	�	��$�,
1Uú	�Hò�1Uì îQò��Uñ��65 4	����� 7�;	;�;	;�8�1Qú��Uòïý	���íø��Hòíñ	�65 4	�	��� 7�;	;	;�;�8êê�(Hìíøíô�� ô��ïúïû3
íúíûíü��+�í÷HøHìïô�� úíûUöê
(Hìíøíô�� ô��ïúïû	1Uì îQò����	�	�Hý�0�'	�3�Hì	�	��� îUò	��#��:�Uì��	1Uú��UòHö�����ëïþUìïøUò��	�	1�<
(Hìíøíô�� ô��ïúïû	1Uì îQò����Hò� H÷	��1Qú��HòUö+�Uñ��65 �	���	#	7��	��#	��8�ëíôHìíôHò��	0�(��HòíüHìí÷Hñïô��	=��Hë
(Hìíøíô�� ô��ïúïû	1Uì îQò��QõïñíìUöíö:1Qú��HòUö+�Uñ��65 �	��#�� 7��	�	.���8�ýUñíñHú�>	?HøHúí÷íðUö��Uöïôí÷	�UòïûHôUö%@ ôHòHìHõ þUòïøQö
(Hìíøíô�� ô��ïúïû	1Uì îQò��Uñíú���� û�1Qú��HòUö+�Uñ��65 �	���	�	7��	���	��8�ëíôHìíôHò�����<�*	1�ê3�Húïû6A ô�öíõïþHò	�í÷HñHò2>Húïø	��þHòíøHòê
(Hìíøíô�� ô��ïúïû	1Uì îQò����	�	�Hý�0�'	�3�Hì	�	��� îUò	��0�1�'�!���!��	�	��-Qúíúíô�<ïûUñ����	=	�Uë
(Hìíøíô�� ô��ïúïû	1Uì îQò��� HìïôQõ þ�1Qú��HòUö+�Uñ��65 �	�	.�� 7�;	;�;	;�83�Uì��	1Uú��UòHö��	.���;	

Table 1. Sample SLURM config file

� Change node count of running job (could fail if insufficient resources are avail-
able)

Jobs are placed in a priority-ordered queue and allocated nodes as selected by
the Partition Manager. SLURM implements a very simple default scheduling al-
gorithm, namely FIFO. An attempt is made to schedule pending jobs on a periodic
basis and whenever any change in job, partition, or node state might permit the
scheduling of a job.

We are aware that this scheduling algorithm does not satisfy the needs of many
customers, and we provide the means for establishing other scheduling algorithms.
Before a newly arrived job is placed into the queue, an external scheduler plu-
gin assigns its initial priority. A plugin function is also called at the start of each

scheduling cycle to modify job or system state as desired. SLURM APIs permit an
external entity to alter the priorities of jobs at any time and re-order the queue as
desired. The Maui Scheduler [6, 7] is one example of an external scheduler suitable
for use with SLURM.

LLNL uses DPCS [4] as SLURM’s external scheduler. DPCS is a meta-scheduler
with flexible scheduling algorithms that suit our needs well. It also provides the
scalability required for this application. DPCS maintains pending job state inter-
nally and only transfers the jobs to SLURM (or another underlying resources man-
ager) only when they are to begin execution. By not transferring jobs to a particular
resources manager earlier, jobs are assured of being initiated on the first resource
satisfying their requirements, whether a Linux cluster with SLURM or an IBM SP
with LoadLeveler (assuming a highly flexible application). This mode of operation
may also be suitable for computational grid schedulers.

In a future release, the Job Manager will collect resource consumption infor-
mation (CPU time used, CPU time allocated, and real memory used) associated
with a job from the ¨ �������5£ daemons. Presently, only the wall-clock run time of a
job is monitored. When a job approaches its time limit (as defined by wall-clock
execution time) or an imminent system shutdown has been scheduled, the job is
terminated. The actual termination process is to notify ¨ ���`���5£ daemons on nodes
allocated to the job of the termination request. The ¨ �i�����5£ job termination proce-
dure, including job signaling, is described in Section 4.

One may think of a job as described above as an allocation of resources rather
than a collection of parallel tasks. The job script executes ¨ �¥�¥� commands to ini-
tiate the parallel tasks or “job steps. ” The job may include multiple job steps, ex-
ecuting sequentially and/or concurrently either on separate or overlapping nodes.
Job steps have associated with them specific nodes (some or all of those associated
with the job), tasks, and a task distribution (cyclic or block) over the nodes.

The management of job steps is considered a component of the Job Manager.
Supported job step functions include:� Register job step� Get job step information� Run job step request� Signal job step

Job step information includes a list of nodes (entire set or subset of those allo-
cated to the job) and a credential used to bind communications between the tasks
across the interconnect. The ¨ �������Z�i�:��£ constructs this credential and sends it to
the ¨ �¥�`� initiating the job step.

3.5 Fault Tolerance

SLURM supports system level fault tolerance through the use of a secondary or
“backup” controller. The backup controller, if one is configured, periodically pings
the primary controller. Should the primary controller cease responding, the backup
loads state information from the last state save and assumes control. When the

primary controller is returned to service, it tells the backup controller to save state
and terminate. The primary then loads state and assumes control.

SLURM utilities and API users read the configuration file and initially try to
contact the primary controller. Should that attempt fail, an attempt is made to con-
tact the backup controller before returning an error.

SLURM attempts to minimize the amount of time a node is unavailable for
work. Nodes assigned to jobs are returned to the partition as soon as they success-
fully clean up user processes and run the system epilog. In this manner, those nodes
that fail to successfully run the system epilog, or those with unkillable user pro-
cesses, are held out of the partition while the remaining nodes are quickly returned
to service.

SLURM considers neither the crash of a compute node nor termination of ¨ �¥�`�
as a critical event for a job. Users may specify on a per-job basis whether the
crash of a compute node should result in the premature termination of their job.
Similarly, if the host on which ¨ �¥�`� is running crashes, the job continues execution
and no output is lost.

4 Slurmd Design

The ¨ ���`���5£ daemon is a multi-threaded daemon for managing user jobs and mon-
itoring system state. Upon initiation it reads the configuration file, recovers any
saved state, captures system state, attempts an initial connection to the SLURM
controller, and awaits requests. It services requests for system state, accounting
information, job initiation, job state, job termination, and job attachment. On the
local node it offers an API to translate local process ids into SLURM job id.

The most common action of ¨ �i�����5£ is to report system state on request. Upon¨ �������5£ startup and periodically thereafter, it gathers the processor count, real
memory size, and temporary disk space for the node. Should those values change,
the controller is notified. In a future release of SLURM, ¨ �������5£ will also capture
CPU and real-memory and virtual-memory consumption from the process table
entries for uploading to ¨ ���`���b�i�:�_£ .¨ �������5£ accepts requests from ¨ �¥�`� and ¨ �������Z�i�:��£ to initiate and terminate
user jobs. The initiate job request contains such information as real uid, effective
uid, environment variables, working directory, task numbers, job step credential,
interconnect specifications and authorization, core paths, SLURM job id, and the
command line to execute. System-specific programs can be executed on each allo-
cated node prior to the initiation of a user job and after the termination of a user job
(e.g., Prolog and Epilog in the configuration file). These programs are executed as
user root and can be used to establish an appropriate environment for the user (e.g.,
permit logins, disable logins, terminate orphan processes, etc.). ¨ �������5£ executes
the prolog program, resets its session id, and then initiates the job as requested. It
records to disk the SLURM job id, session id, process id associated with each task,
and user associated with the job. In the event of ¨ �i�����5£ failure, this information
is recovered from disk in order to identify active jobs.

When ¨ �i�����5£ receives a job termination request from the SLURM controller,
it sends SIGTERM to all running tasks in the job, waits for KillWait seconds (as
specified in the configuration file), then sends SIGKILL. If the processes do not
terminate ¨ �����i�5£ notifies ¨ ���`���b�i�:�_£ , which logs the event and sets the node’s
state to DRAINED. After all processes have terminated, ¨ �����i�5£ executes the con-
figured epilog program, if any.

5 Command Line Utilities

5.1 scancel

¨ �_�_�¤����� terminates queued jobs or signals running jobs or job steps. The default
signal is SIGKILL, which indicates a request to terminate the specified job or job
step. ¨ �_�_�5�_��� identifies the job(s) to be signaled through user specification of the
SLURM job id, job step id, user name, partition name, and/or job state. If a job id
is supplied, all job steps associated with the job are affected as well as the job and
its resource allocation. If a job step id is supplied, only that job step is affected.¨ �_�_�¤����� can only be executed by the job’s owner or a privileged user.

5.2 scontrol

¨ �_�_���¥����� is a tool meant for SLURM administration by user root. It provides the
following capabilities:����­`����£���Ó`� : Cause ¨ �������Z�i�:��£ and ¨ ���`���5£ to save state and terminate.��°��:�_�_��«O��·¥����� : Cause ¨ ���`���b�i�:�_£ and ¨ �����i�5£ to reread the configuration file.���5�¡��· : Display the status of primary and backup ¨ �������Z�i�:��£ daemons.����­:�_Ó¢³��_��«O��·¥�����_�¤���_���������¡�¤������� ¨ : Display the values of general SLURM

configuration parameters such as locations of files and values of timers.����­:�_Ó�®¥�_�������_��� : Display the state information of a particular job or all jobs
in the system.����­:�_Ó�®¥�_�����������_������� : Display the state information of a particular job step
or all job steps in the system.����­:�_ÓÎµ��¥£�� ��������� : Display the state and configuration information of a par-
ticular node, a set of nodes (using numeric ranges syntax to identify their
names), or all nodes.����­:�_ÓÎ�����`�5���¤���_� ��������� : Display the state and configuration information of
a particular partition or all partitions.�W´`��£������ ®��_����������� : Update the state information of a particular job in the
system. Note that not all state information can be changed in this fashion (e.g.,
the nodes allocated to a job).�W´`��£������tµ��¥£�� ��������� : Update the state of a particular node. Note that not all
state information can be changed in this fashion (e.g., the amount of memory
configured on a node). In some cases, you may need to modify the SLURM
configuration file and cause it to be reread using the “Reconfigure” command
described above.

�W´���£������t���_�`�¤���¤�i�_�Î�����_��� : Update the state of a partition node. Note that
not all state information can be changed in this fashion (e.g., the default parti-
tion). In some cases, you may need to modify the SLURM configuration file
and cause it to be reread using the “Reconfigure” command described above.

5.3 squeue

¨iª �:�_�:� reports the state of SLURM jobs. It can filter these jobs input specification
of job state (RUN, PENDING, etc.), job id, user name, job name, etc. If no speci-
fication is supplied, the state of all pending and running jobs is reported. ¨�ª ���_�:�
also has a variety of sorting and output options.

5.4 sinfo

¨ �¡��«�� reports the state of SLURM partitions and nodes. By default, it reports a
summary of partition state with node counts and a summary of the configuration
of those nodes. A variety of sorting and output formatting options exist.

5.5 srun

¨ �¥�`� is the user interface to accessing resources managed by SLURM. Users may
utilize ¨ �¥�`� to allocate resources, submit batch jobs, run jobs interactively, attach
to currently running jobs, or launch a set of parallel tasks (job step) for a running
job. ¨ �¥�`� supports a full range of options to specify job constraints and charac-
teristics, for example minimum real memory, temporary disk space, and CPUs
per node, as well as time limits, stdin/stdout/stderr handling, signal handling, and
working directory for job. The full range of options is detailed in Table 2.

The ¨ �¥�`� utility can run in four different modes: interactive, in which the ¨ �¥�¥�
process remains resident in the user’s session, manages stdout/stderr/stdin, and
forwards signals to the remote tasks; batch, in which ¨ �¥�`� submits a job script to
the SLURM queue for later execution; allocate, in which ¨ �¥�¥� requests resources
from the SLURM controller and spawns a shell with access to those resources;
attach, in which ¨ �¥�¥� attaches to a currently running job and displays stdout/stderr
in real time from the remote tasks.

6 Job Initiation Design

There are three modes in which jobs may be run by users under SLURM. The
first and most simple mode is interactive mode, in which stdout and stderr are dis-
played on the user’s terminal in real time, and stdin and signals may be forwarded
from the terminal transparently to the remote tasks. The second mode is batch or
queued mode, in which the job is queued until the request for resources can be sat-
isfied, at which time the job is run by SLURM as the submitting user. In the third

Option Arg Type Description
attach string attach ¸º¹¡»�¼ to a running job
allocate boolean allocate nodes only
batch boolean submit a batch script to job queue
cddir string working directory of remote processes
constraint string arbitrary feature constraints
contiguous boolean allocate contiguous nodes only
cpus-per-task number number of CPUs needed per process
distribution string distribution method for processes (block

B
cyclic)

error string location of stderr redirection
exclude string do not allocate from a specific set of hosts
immediate boolean exit if resources are not immediately available
input string location of stdin redirection
join string join existing ¸�¹¡»�¼ to collect output of a running job
job-name string name of job
label boolean prepend task number to lines of stdout/err
mem number minimum amount of real memory per node
mincpus number minimum number of CPUs per node
no-kill boolean don’t kill job if allocated nodes fail
nodelist string request a specific set of hosts
nodes numbers minimum and maximum number of nodes on which to run
ntasks number number of tasks to run
output string location of stdout redirection
overcommit boolean allow more than 1 process per CPU
partition string partition name in which to run
share boolean allow nodes to be shared with other jobs
threads number run with this number of communication threads
time number wall-clock time limit in minutes
tmp number minimum amount of temporary disk space
verbose boolean verbose operation
version boolean print ¸º¹p»�¼ version and exit
wait number seconds to wait after first task end before killing job

Table 2. List of ¸º¹¡»�¼ user options

mode,allocate mode, a job is allocated to the requesting user, under which the user
may manually run job steps via a script or in a sub-shell spawned by ¨ �¥�`� .

Figure 4 shows a high-level depiction of the connections that occur between
SLURM components during a general interactive job startup. ¨ ���`� requests a re-
source allocation and job step initiation from the ¨ �������b���:��£ , which responds
with the job id, list of allocated nodes, job step credential, etc. if the request is
granted, ¨ �¥�`� then initializes a listen port for stdio connections and connects to
the ¨ ���`���5£ s on the allocated nodes requesting that the remote processes be ini-
tiated. The ¨ �����i�5£ s begin execution of the tasks and connect back to ¨ �¥�`� for
stdout and stderr. This process and other initiation modes are described in more
detail below.

srun

slurmctld

slurmdslurmdslurmd

ephemeral port ‘‘known’’ port

1.
2.

3.

4.

Fig. 4. Job initiation connections overview. 1. ¸º¹¡»�¼ connects to ¸�Cº»�¹ED3FHG�CHI requesting re-
sources. 2. ¸�Cº»i¹JD3FHG�CKI issues a response, with list of nodes and job step credential. 3. ¸º¹¡»¡¼
opens a listen port for job IO connections, then sends a run job step request to ¸�Cº»�¹ED:I . 4.¸KCº»i¹ED:I initiates job step and connects back to ¸º¹¡»�¼ for stdout/err

6.1 Interactive Job Initiation

Interactive job initiation is shown in Figure 5. The process begins with a user in-
voking ¨ �¥�¥� in interactive mode. In Figure 5, the user has requested an interactive
run of the executable “ �º�5£ ” in the default partition.

After processing command line options, ¨ �¥�¥� sends a message to ¨ �������Z�i�:��£
requesting a resource allocation and a job step initiation. This message simultane-
ously requests an allocation (or job) and a job step. ¨ �¥�¥� waits for a reply from¨ �������b���:��£ , which may not come instantly if the user has requested that ¨ �¥�`�
block until resources are available. When resources are available for the user’s job,¨ �������b���:��£ replies with a job step credential, list of nodes that were allocated,
cpus per node, and so on. ¨ �¥�`� then sends a message each ¨ ���`���5£ on the allo-
cated nodes requesting that a job step be initiated. The ¨ ���`���5£ daemons verify
that the job is valid using the forwarded job step credential and then respond to¨ �¥�`� .

Each ¨ �i�����5£ invokes a job manager process to handle the request, which in
turn invokes a session manager process that initializes the session for the job step.
An IO thread is created in the job manager that connects all tasks’ IO back to a
port opened by ¨ �¥�¥� for stdout and stderr. Once stdout and stderr have success-
fully been connected, the task thread takes the necessary steps to initiate the user’s
executable on the node, initializing environment, current working directory, and
interconnect resources if needed.

Each ¨ �������O£ forks a copy of itself that is responsible for the job step on this
node. This local job manager process then creates an IO thread that initializes std-
out, stdin, and stderr streams for each local task and connects these streams to
the remote ¨ �¥�¥� . Meanwhile, the job manager forks a session manager process
that initializes the session becomes the requesting user and invokes the user’s pro-
cesses.

User
slurmctld slurmd

register job step

register job step reply

run job step req

run job step reply job_mgr
session_mgr

connect(stdout/err)

task exit msg

release allocation
run epilog req

run epilog reply

srun

status req (periodic)

status reply

exit
status

cmd

srun cmd

prolog

epilog

Fig. 5. Interactive job initiation. ¸º¹¡»�¼ simultaneously allocates nodes and a job step from¸�Cº»i¹ED�FHG�CKI then sends a run request to all ¸�Cº»i¹ED�I s in job. Dashed arrows indicate a periodic
request that may or may not occur during the lifetime of the job

As user processes exit, their exit codes are collected, aggregated when possible,
and sent back to ¨ �¥�`� in the form of a task exit message. Once all tasks have exited,
the session manager exits, and the job manager process waits for the IO thread to
complete, then exits. The ¨ �¥�¥� process either waits for all tasks to exit, or attempts
to clean up the remaining processes some time after the first task exits (based
on user option). Regardless, once all tasks are finished, ¨ �¥�¥� sends a message to
the ¨ �������b���:��£ releasing the allocated nodes, then exits with an appropriate exit
status.

When the ¨ ���`���b�i�:�_£ receives notification that ¨ �¥�¥� no longer needs the al-
located nodes, it issues a request for the epilog to be run on each of the ¨ �������O£ s
in the allocation. As ¨ �������5£ s report that the epilog ran successfully, the nodes are
returned to the partition.

6.2 Queued (Batch) Job Initiation

Figure 6 shows the initiation of a queued job in SLURM. The user invokes ¨ �¥�`�
in batch mode by supplying the ½`½��:�_�5��­ option to ¨ �¥�`� . Once user options are
processed, ¨ �¥�¥� sends a batch job request to ¨ �����i�b�i�:��£ that identifies the stdin,
stdout and stderr file names for the job, current working directory, environment,
requested number of nodes, etc. The ¨ �i�����b�i����£ queues the request in its priority-
ordered queue.

srun slurmctld slurmd slurmd

batch req

batch reply

run req
job_mgr

session_mgr

srun

run reply

job step req

job step reply

cmd

release step reply

release step

task exit msg

run epilog req

run epilog reply

script

User

submit
exit status

job
queued

srun batch

prolog

epilog

Fig. 6. Queued job initiation. ¸�Cº»i¹ED�FHG�CKI initiates the user’s job as a batch script on one
node. Batch script contains an ¸º¹¡»�¼ call that initiates parallel tasks after instantiating job
step with controller. The shaded region is a compressed representation and is shown in more
detail in the interactive diagram (Figure 5)

Once the resources are available and the job has a high enough priority,¨ �������b���:��£ allocates the resources to the job and contacts the first node of the
allocation requesting that the user job be started. In this case, the job may either
be another invocation of ¨ �¥�`� or a job script including invocations of ¨ �¥�¥� . The¨ �������5£ on the remote node responds to the run request, initiating the job manager,
session manager, and user script. An ¨ �¥�`� executed from within the script detects
that it has access to an allocation and initiates a job step on some or all of the nodes
within the job.

Once the job step is complete, the ¨ �¥�¥� in the job script notifies the ¨ �������b���:��£
and terminates. The job script continues executing and may initiate further job
steps. Once the job script completes, the task thread running the job script collects
the exit status and sends a task exit message to the ¨ ���`���b�i�:�_£ . The ¨ �i�����b�i����£
notes that the job is complete and requests that the job epilog be run on all nodes
that were allocated. As the ¨ �����i�5£ s respond with successful completion of the
epilog, the nodes are returned to the partition.

User
slurmctld slurmd

allocate req

allocate reply

run job step req

job step reply

job_mgr
session_mgr

connect(stdout/err)

task exit msg

srun

exit
status

cmd

srun allocate

srun
job step req

sh

run job step reply

release allocation
run epilog req

run epilog reply

release job step

job/job step status

prolog

epilog

Fig. 7. Job initiation in allocate mode. Resources are allocated and ¸º¹p»�¼ spawns a shell
with access to the resources. When user runs an ¸º¹¡»¡¼ from within the shell, the a job step
is initiated under the allocation

6.3 Allocate Mode Initiation

In allocate mode, the user wishes to allocate a job and interactively run job steps
under that allocation. The process of initiation in this mode is shown in Figure 7.
The invoked ¨ �¥�`� sends an allocate request to ¨ �����i�b�i�:��£ , which, if resources are
available, responds with a list of nodes allocated, job id, etc. The ¨ �¥�¥� process
spawns a shell on the user’s terminal with access to the allocation, then waits for
the shell to exit (at which time the job is considered complete).

An ¨ �¥�`� initiated within the allocate sub-shell recognizes that it is running
under an allocation and therefore already within a job. Provided with no other
arguments, ¨ �¥�`� started in this manner initiates a job step on all nodes within the
current job.

An ¨ ���`� executed from the sub-shell reads the environment and user options,
then notifies the controller that it is starting a job step under the current job. The¨ �������Z�i�:��£ registers the job step and responds with a job step credential. ¨ �¥�¥�
then initiates the job step using the same general method as for interactive job
initiation.

When the user exits the allocate sub-shell, the original ¨ �¥�`� receives exit sta-
tus, notifies ¨ �����i�b�i�:��£ that the job is complete, and exits. The controller runs

the epilog on each of the allocated nodes, returning nodes to the partition as they
successfully complete the epilog.

7 Results

0.1

1

10

1 2 4 8 16 32 64 128 256 512 950

S
ec

on
ds

Nodes

SLURM
RMS

LoadLeveler

Fig. 8. Time to execute /bin/hostname with various node counts

We were able to perform some SLURM tests on a 1000-node cluster in Novem-
ber 2002. Some development was still underway at that time and tuning had not
been performed. The results for executing the program /bin/hostname on two tasks
per node and various node counts are shown in Figure 8. We found SLURM per-
formance to be comparable to the Quadrics Resource Management System (RMS)
[8] for all job sizes and about 80 times faster than IBM LoadLeveler[9] at tested
job sizes.

8 Future Plans

SLURM begin production use on LLNL Linux clusters in March 2003 and is avail-
able from our web site[10].

While SLURM is able to manage 1000 nodes without difficulty using sockets
and Ethernet, we are reviewing other communication mechanisms that may offer

improved scalability. One possible alternative is STORM [11]. STORM uses the
cluster interconnect and Network Interface Cards to provide high-speed commu-
nications, including a broadcast capability. STORM only supports the Quadrics
Elan interconnnect at present, but it does offer the promise of improved perfor-
mance and scalability.

Looking ahead, we anticipate adding support for additional interconnects (In-
finiBand and the IBM Blue Gene [12] system4). We anticipate adding a job pre-
empt/resume capability to the next release of SLURM. This will provide an ex-
ternal scheduler the infrastructure required to perform gang scheduling. We also
anticipate adding a checkpoint/restart capability at some time in the future ,and we
plan to support changing the node count associated with running jobs (as needed
for MPI2). Recording resource use by each parallel job is planned for a future
release.

9 Acknowledgments

SLURM is jointly developed by LLNL and Linux NetworX. Contributers to SLURM
development include:

� Jay Windley of Linux NetworX for his development of the plugin mechanism
and work on the security components� Joey Ekstrom for his work developing the user tools� Kevin Tew for his work developing the communications infrastructure� Jim Garlick for his development of the Quadrics Elan interface and technical
guidance� Gregg Hommes, Bob Wood, and Phil Eckert for their help designing the SLURM
APIs� Mark Seager and Greg Tomaschke for their support of this project� Chris Dunlap for technical guidance� David Jackson of Linux NetworX for technical guidance� Fabrizio Petrini of Los Alamos National Laboratory for his work to integrate
SLURM with STORM communications

References

1. Jette, M. et al. Survey of Batch/Resource Management Related System Software.
Lawrence Livermore National Laborary, 2002 (unpublished).

2. The GNU Project (2003). http://www.gnu.org/licenses/licenses.html.
3. The Globus Project (2003). http://www.globus.org.
4. Lawrence Livermore National Laborary (2001). “Distributed Production Control Sys-

tem (DPCS).” http://www.llnl.gov/icc/lc/dpcs/dpcs overview.html.
5. Chun, B. “authd,” http://www.theether.org/authd/.

4 Blue Gene has a different interconnect than any supported by SLURM and a 3-D topog-
raphy with restrictive allocation constraints.

6. Jackson, D., Q. Snell, and M. Clement. “Core Algorithms of the Maui Scheduler”. In
Job Scheduling Stategies for Parallel Processing, 7th International Workshop, JSSPP
2001, Cambridge, MA, June 16, 2001. Edited by D.G. Feitelson, L. Rudolph and U.
Schwiegelshohn, (Springer, New York; Berlin, 2001) LLCS vol. 2221, 87-102.

7. Maui Scheduler. http://mauischeduler.sourceforge.net/.
8. Quadrics Ltd. “Resource Management System,” http://www.quadrics.com/.
9. IBM “LoadLeveler”.

http://www-1.ibm.com/servers/eserver/pseries/library/sp books/loadleveler.html.
10. Lawrence Livermore National Laborary (2003). “SLURM Simple Linux Utility for

Resource Management,” http://www.llnl.gov/linux/slurm/.
11. Frachtenberg, E. et al. “STORM: Lightning-Fast Resource Management”. In Pro-

ceedings of SuperComputing 2002, (Baltimore, MD, November 2002). Available from
http://www.cs.huji.ac.il/ L etcs/papers/sc02.pdf.

12. Lawrence Livermore National Laborary (2003). “Blue/GeneL,”
http://www.llnl.gov/asci/platforms/bluegenel.

