
Real Scale Experimentations of
SLURM Resource and Job Management System

Yiannis Georgiou
PhD Candidate, BULL R&D Software Engineer

October 4, 2010

1 / 34

Plan

1 Introduction
Experimentation in High Performance Computing

2 Real-Scale Experimentation for Resource and Job Management Systems
Methodology - Platforms and Workloads

3 SLURM Experimental Analysis and Performance Evaluation
Scheduling Efficiency
Scalability
Energy Efficient Management
Network Topology Aware Placement

4 Conclusions and Ongoing Works

5 Appendix - References

2 / 34

Introduction

Introduction

Technological evolutions have introduced extra levels of hiererchies that need to
be treated by the resource management system

The scientific needs and the increasing demands for computing power by
applications made users more demanding in terms of robustness and certain
quality of services.

Continuous growth of cluster’s sizes and network diameters lead to issues
concerning scalability, scheduling efficiency for optimal communication speeds,
fault tolerance and energy efficient management.

How can we make sure that a Resource and Job Management System will be able
to deal with those challenges?

3 / 34

Introduction Experimentation in High Performance Computing

Experimental Methodologies for HPC

The study of HPC systems depends on large number of parameters and
conditions.

Experimentation in HPC makes use of simulators or emulators which present
advantages (control of experiments, ease of reproduction) but they fail to capture
all the dynamic, variety and complexity of real life conditions.

Real-scale experimentation is needed in HPC for study and evaluation of all
internal functions as one complete system.

4 / 34

Introduction Experimentation in High Performance Computing

Workload Modelling

Performance evaluation by executing a sequence of jobs. This sequence is the
actual workload that will be injected to the system.

Two common ways to use a workload for system evaluation.
1 Either a workload log (trace): record of resource usage data about a stream of

parallel and sequential jobs that were submitted and run on a real parallel system,
2 or a workload model (synthetic workload): based on some probability distributions to

generate workload data, with the goal of clarifying their underlying principles (ESP
benchmark).

Workload Trace Decomposition

Workload Trace Analysis and Part Selection for Execution

Workload Conversion and Normalization for Submission

Trace Part Submission for Execution

Synthetic Workload Generation Real Workload Trace Treatment

Workload Trace Analysis and Post-treatment for validation

Results Collection and Jobs data conversion to Workload Trace

 Adapted Workload Generation from input parameters

Workload Trace Analysis

Workload Trace File

Workload Execution upon Cluster

Workload Trace file

Initial Workload Trace fileInput Parameters

Applicat ions Used for Execution
simple sleep jobs
Linpack

NAS NPB 3.3

MCFOST Astrophysical

Mandelbrot

Workload Trace Analysis
System Uti l izat ion

Jobs Arrival Rate

Jobs StrechTime

Energy Consumption

Jobs Waiting Time

pchksum

Workload Logs

5 / 34

Introduction Experimentation in High Performance Computing

Standard Workload Format

Definition of SWF format to describe the execution of a sequence of jobs.
; Computer: Linux cluster (Atlas)
; Installation: High Performance Computing - Lawrence Livermore National Laboratory
; MaxJobs: 60332
; MaxRecords: 60332
; Preemption: No
; UnixStartTime: 1163199901
; TimeZone: 3600
; TimeZoneString: US/Pacific
; StartTime: Fri Nov 10 15:05:01 PST 2006
; EndTime: Fri Jun 29 14:02:41 PDT 2007
; MaxNodes: 1152
; MaxProcs: 9216
; Note: Scheduler is Slurm (https://computing.llnl.gov/linux/slurm/)
; MaxPartitions: 4
; Partition: 1 pbatch
; Partition: 2 pdebug
; Partition: 3 pbroke
; Partition: 4 moody20
;
; j| s| w| r| p| c| m| p| u| m|s| u| g| e|q| p| p| t
; o| u| a| u| r| p| e| r| s| e|t| i| i| x| | a| r| h
; b| b| i| n| o| u| m| o| e| m|a| d| d| e|n| r| e| i
; | m| t| t| c| | | c| r| |t| | | |u| t| v| n
; | i| | i| | u| u| | | r|u| | | n|m| i| | k
; | t| | m| a| s| s| r| e| e|s| | | u| | t| j|
; | | | e| l| e| e| e| s| q| | | | m| | i| o| t
; | | | | l| d| d| q| t| | | | | | | o| b| i
; | | | | o| | | | | | | | | | | n| | m
; | | | | c| | | | | | | | | | | | | e
2488 4444343 0 8714 1024 -1 -1 1024 -1 -1 0 17 -1 307 -1 1 -1 -1
2489 4444343 0 103897 1024 -1 -1 1024 -1 -1 1 17 -1 309 -1 1 -1 -1
2490 4447935 0 634 2336 -1 -1 2336 10800 -1 1 3 -1 5 -1 1 -1 -1
2491 4448583 0 792 2336 -1 -1 2336 10800 -1 1 3 -1 5 -1 1 -1 -1
2492 4449388 0 284 2336 -1 -1 2336 10800 -1 0 3 -1 5 -1 1 -1 -1

6 / 34

Real-Scale Experimentation for Resource and Job Management Systems

Experimental Methodology - General Principles

Real-Scale experimentation upon dedicated platforms: Control and
Reproduction of experiments.

Injection of characterised workloads to observe the behaviour of the RJMS
under particular conditions.

Extraction of the produced workload trace and post-treatment analysis of the
results.

7 / 34

Real-Scale Experimentation for Resource and Job Management Systems Methodology - Platforms and Workloads

Experimental Methodology - Platforms

Real-Scale experimentation upon dedicated controlled platform:

Grid5000 Experimental grid1, large-scale distributed platform that can be easily
controlled, reconfigured and monitored.

Specially designed for research in computer science, it provides the ability of
environment deployment to facilitate the experimentation upon all different
layers of the software stack.

1https://www.grid5000.fr/
8 / 34

Real-Scale Experimentation for Resource and Job Management Systems Methodology - Platforms and Workloads

Experimental Methodology - Workloads

A particular case of synthetic workload is the ESP benchmark. It has been designed to:

provide a quantitative evaluation of launching and scheduling functions of a
resource and job management system via a single metric, which is the smallest
elapsed execution time of a representative workload

Complete independence from the hardware performance (execution of a simple
MPI application (pchcksum) with fixed target run-time)

Ability for efficiency evaluation of different scheduling policies (injection of the
same workload)

Ability for scalability evaluation of the RJMS (dynamically adjusted proportional
job mix to reflect the system scale)

Workload Trace Decomposition

Workload Trace Analysis and Part Selection for Execution

Workload Conversion and Normalization for Submission

Trace Part Submission for Execution

Synthetic Workload Generation Real Workload Trace Treatment

Workload Trace Analysis and Post-treatment for validation

Results Collection and Jobs data conversion to Workload Trace

 Adapted Workload Generation from input parameters

Workload Trace Analysis

Workload Trace File

Workload Execution upon Cluster

Workload Trace file

Initial Workload Trace fileInput Parameters

Applicat ions Used for Execution
simple sleep jobs
Linpack

NAS NPB 3.3

MCFOST Astrophysical

Mandelbrot

Workload Trace Analysis
System Uti l izat ion

Jobs Arrival Rate

Jobs StrechTime

Energy Consumption

Jobs Waiting Time

pchksum

ESP benchmark

9 / 34

Real-Scale Experimentation for Resource and Job Management Systems Methodology - Platforms and Workloads

Experimental Methodology - Analysis

10 / 34

SLURM Experimental Analysis and Performance Evaluation Scheduling Efficiency

Scheduling Policies Comparisons - Experimentation

Different runs of ESP benchmark: launching the same workload (default ESP) and
executing the same application (pchcksum)

upon the same dedicated cluster: 1 server, 8 nodes (Intel Xeon 2.5GHz 2 CPU-4
CORE, RAM 8 GB, Infiniband 20G)

with the same conditions and parameters:
SLURM v2.2.0.0-pre3 with accounting (mysql-slurmdbd),
granularity (cons res),
task confinement (task affinity/cpuset),
NO topology plugin,
NO backup slurmctld

but only one difference the scheduling policy : backfill, preemption,
gang-scheduling

11 / 34

SLURM Experimental Analysis and Performance Evaluation Scheduling Efficiency

Scheduling Policies Comparisons - Results

Scheduling Policy backfill backfill+preemption gang-scheduling
Total Workload Execution time 12877sec 12781sec 11384sec

ESP Efficieny 83.7% 84.3% 94.8%

Table: ESP benchmark results for SLURM scheduling policies upon a 8 nodes (64 cores) cluster

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark on a 8 nodes cluster (dualCPU-quadCORE)
 with SLURM backfill scheduler (ESP Efficiency 83.7%)

Instant Utilization
Job Start Time Impulse

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark upon a cluster of 8 nodes (dualCPU-quadCore)
 with SLURM backfill + preemption scheduler (ESP Efficiency 84.3%)

Instant Utilization
Job Start Time Impulse

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark on a 8 nodes cluster (dualCPU-quadCore)
 with SLURM gang-scheduling policy (ESP Efficiency 94.8%)

Instant Utilization
Job Start Time Impulse

Details

12 / 34

SLURM Experimental Analysis and Performance Evaluation Scheduling Efficiency

Scheduling Policies Comparisons - Analysis

gang scheduling the best performance, allowing the efficient filling up of all the
’holes’ in the scheduling space

however this is due to the simplicity of the particular application suspend/resume
happens on memory , no swapping needed

preemption better than backfill: due to the 2 higher priority ”all resources jobs”.

13 / 34

SLURM Experimental Analysis and Performance Evaluation Scalability

Scalability Experimentations

Dedicated cluster 1 central controller, 320 computing nodes
(quadCPU-octoCORE Intel Xeon 7500).

with the same conditions and parameters:
SLURM v2.2.0.0-pre7 with accounting (mysql-slurmdbd),
granularity (cons res),
task confinement (task affinity/cpuset),
NO topology plugin,
NO backup slurmctld

1 Scaling in the size of the cluster and execute ESP benchmark for launching and
scheduling scalability evaluation.

2 Scaling in the number of simultaneously submitted jobs and evaluate the
throughput of the scheduler.

14 / 34

SLURM Experimental Analysis and Performance Evaluation Scalability

Scaling the size of the cluster

Cluster size (Number of cores) 512 9216
Average Jobs Waiting time (sec) 2766 2919

Total Workload Execution time (sec) 12992 13099
ESP Efficieny for backfill+preemption policy 82.9% 82.3%

Table: ESP benchmark results for SLURM backfill+preemption scheduling and different cluster
sizes

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 C

or
es

Time sec

System utilization for ESP synthetic workload and SLURM - 512 cores

SLURM
Job Start Time Impulse

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
or

es
 U

til
iz

at
io

n

Time sec

System utilization for ESP synthetic workload and SLURM - 9216 cores

SLURM
Job Start Time Impulse

CDF Graphs

15 / 34

SLURM Experimental Analysis and Performance Evaluation Scalability

Scaling the number of submitted jobs:
Backfill policy

Submission burst of small granularity jobs (srun -n1 sleep 1000)

Good throughput performance for backfill scheduler

16 / 34

SLURM Experimental Analysis and Performance Evaluation Scalability

Scaling the number of submitted jobs:
Backfill with Preemption policy

Submission burst of small granularity jobs (srun -n1 sleep 1000)

No different priorities between jobs, hence no possibility of preemption

Degredation problems with backfill+preemption

0 50 100 150 200 250 300

0
50

10
0

15
0

Instant Throughput for 7000 submitted jobs (1core each)
 upon a 10240 cores cluster (Backfill+Preemption Mode)

Time(sec)

N
um

be
r

of
 J

ob
s

Proposed Optimization

17 / 34

SLURM Experimental Analysis and Performance Evaluation Energy Efficient Management

Energy Efficient Resource Management

Dedicated cluster 1 SLURM central controller, 32 computing nodes (DualCPU,
2GB, Gigabit Ethernet).

with the same conditions and parameters SLURM-2.1

launch a workload based on a trace file with 89.7% system utilization, execute
NAS BT class C applications and measure the energy consumption of the whole
cluster

only difference: enable or not the power saving mode.

Energy Consumption collected by Watt-meters (per node measures).

18 / 34

SLURM Experimental Analysis and Performance Evaluation Energy Efficient Management

Energy Efficient Resource Management

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

C
on

su
m

pt
io

n
[W

at
t]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000
Time [s]

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

Total Energy Consumed:

NORMAL Management 53.617888025 KWatts.hour
GREEN Management 47.538609925 KWatts.hour

Total Execution Time:

NORMAL 26557
GREEN 26638

CDF Graphs 19 / 34

SLURM Experimental Analysis and Performance Evaluation Network Topology Aware Placement

Network Topology Aware Placement Evaluations

Dedicated cluster 1 SLURM central controller, 128 computing nodes
(quadCPU-octoCORE Intel Xeon 7500).

network topological constraints, 2 different islands , 64 nodes per island : higher
bandwidth in the same island

with the same conditions and parameters SLURM v2.2.0.0-pre7

launch a workload based on ESP workload but without fixed run time for
applications so as to observe the real execution time of the application

in place of pchksum execute NAS MPI CG class D applications (sensitive in
communications) and observe the total execution time of the whole workload

only difference: enable or not the topology plugin.

20 / 34

SLURM Experimental Analysis and Performance Evaluation Network Topology Aware Placement

Network Topology Aware Placement Evaluations

SLURM NB cores-TOPO Cons / Topo-ESP-NAS-Results Theoretic- Ideal values 4096 NO-Topology Aware 4096 Topology Aware
Total Execution time(sec) 12227 17518 16985
Average Wait time(sec) - 4575 4617

Average Execution time(sec) - 502 483
Efficieny for Topo-ESP-NAS 100% 69.8% 72.0%

Jobs on 1 island 228 165 183
Jobs on 2 islands 2 65 47

Table: TOPO-ESP-NAS benchmark results for 4096 resources cluster

21 / 34

Conclusions and Ongoing Works

Conclusions SLURM

SLURM Resource and Job Management System has been choosen for BULL High
Performance Computing Petaflopic Offer:

Scalable, Efficient and Robust

Passing the Petaflop barrier allowed us to experiment with scalability levels that
are attained for the first time,

Real scale - controlled experimentation guarantees that SLURM performance
and efficiency will stay as expected.

Research for ways of simulating an even larger platform in order to prepare the
Resource and Job Management Systems for the next level of scalability.

Deeper Workload Traces Modelization and replays of trace models for possible
optimization (application performance, energy consumption) by considering the
side-effects, tradeoffs

22 / 34

Conclusions and Ongoing Works

Ongoing Works and Collaborations

BULL’s Team for SLURM Developments and Support: Martin Perry (cgroups),
Nancy Kritkausky, David Egolf(Licenses Management), Rod Schultz(topology
extraction), Eric Lynn, Dan Rusak(sview), Doug Parisek(Power Management), Bill
Brophy (strigger,scheduling optimizations), Yiannis Georgiou

Collaborations with CEA: Matthieu Heutreux, Francis Belot

Research continuous in modelization and experimentation Gael Gorgo (BULL,
INRIA), Joseph Emeras (INRIA, CEA), Olivier Richard (INRIA)

23 / 34

Conclusions and Ongoing Works

24 / 34

Appendix - References

Scheduling Evaluation: Backfill

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark on a 8 nodes cluster (dualCPU-quadCORE)
 with SLURM backfill scheduler (ESP Efficiency 83.7%)

Instant Utilization
Job Start Time Impulse

25 / 34

Appendix - References

Scheduling Evaluation: Backfill + Preemption

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark upon a cluster of 8 nodes (dualCPU-quadCore)
 with SLURM backfill + preemption scheduler (ESP Efficiency 84.3%)

Instant Utilization
Job Start Time Impulse

26 / 34

Appendix - References

Scheduling Evaluation: Gang Scheduling

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark on a 8 nodes cluster (dualCPU-quadCore)
 with SLURM gang-scheduling policy (ESP Efficiency 94.8%)

Instant Utilization
Job Start Time Impulse

Back.

27 / 34

Appendix - References

Jobs Waiting Time

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulated Distribution Function on Waiting time for ESP benchmark and
 SLURM backfill+preemption scheduler

Wait time [sec]

Jo
bs

 [%
]

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulated Distribution Function on Waiting time for ESP benchmark and
 SLURM backfill+preemption scheduler

Wait time [sec]

Jo
bs

 [%
]

SLURM512
SLURM9216

Back.

28 / 34

Appendix - References

Throughput Preemption - Proposed Optimization

Degredation is due to unnecessary checks for each job for a preemption space even if
all jobs have the same priority.

In gang logic, skip shadow processing if the priority of all configured partitions are
the same

Skip unnecesary linear search of job list if submitted jobs have the same priority

2 patches recently developped (Bill Brophy), not yet verified.
Back.

29 / 34

Appendix - References

Throughput Experiments

Back.

30 / 34

Appendix - References

Energy Reductions Tradeoffs

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time with 89.62% of system utilization and NAS BT benchmark

Wait time [s]

Jo
bs

 [%
]

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time with 89.62% of system utilization and NAS BT benchmark

Wait time [s]

Jo
bs

 [%
]

GREEN
NORMAL

Back.

31 / 34

Appendix - References

Network Topology Aware Placement Evaluations

 0

 20

 40

 60

 80

 100

1 2 3

Jo
bs

 P
er

ce
nt

ag
es

Number of used islands

Topology aware placement SLURM: 230 ESP jobs upon 64node(biCPU-quadCORE) cluster

NO-TOPOLOGY-Default(ESP-Efficiency=82.7%)
withTOPOLOGY-AwarePlugin(ESP-Efficiency=82.5%)

TOPOLOGY-with-ConstraintsSTRICT(ESP-Efficiency=77.8%)

32 / 34

Appendix - References

Archive of Real Parallel Workloads

Workload Traces From Until Months CPUS Jobs Users Utilization %
LANL O2K Nov 1999 Apr 2000 5 2,048 121,989 337 64.0

OSC Cluster Jan 2000 Nov 2001 22 57 80,714 254 43.1
SDSC BLUE Apr 2000 Jan 2003 32 1,152 250,440 468 76.2

HPC2N Jul 2002 Jan 2006 42 240 527,371 258 72.0
DAS2 fs0 Jan 2003 Jan 2004 12 144 225,711 102 14.9
DAS2 fs1 Jan 2003 Dec 2003 12 64 40,315 36 12.1
DAS2 fs2 Jan 2003 Dec 2003 12 64 66,429 52 19.5
DAS2 fs3 Jan 2003 Dec 2003 12 64 66,737 64 10.7
DAS2 fs4 Feb 2003 Dec 2003 11 64 33,795 40 14.5

SDSC DataStar Mar 2004 Apr 2005 13 1,664 96,089 460 62.8
LPC EGEE Aug 2004 May 2005 9 140 244,821 57 20.8
LLNL uBGL Nov 2006 Jun 2007 7 2,048 112,611 62 56.1
LLNL Atlas Nov 2006 Jun 2007 8 9,216 60,332 132 64.1

LLNL Thunder Jan 2007 Jun 2007 5 4,008 128,662 283 87.6

Table: Logs of Real Parallel Workloads from Production Systems [Feitelson’s Logs Archive

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html]

Back.

33 / 34

Appendix - References

ESP Benchmark

Job Type Fraction of Job Size Job size for a 512cores Least number of Count of the number Percentage Target Run Time
relative to total system cluster (in cores) needed islands of total jobs of job instance (Seconds)

size
A 0.03125 16 1 75 32.6% 267
B 0.06250 32 1 9 3.9% 322
C 0.50000 256 2 3 1.3% 534
D 0.25000 128 1 3 1.3% 616
E 0.50000 256 2 3 1.3% 315
F 0.06250 32 1 9 3.9% 1846
G 0.12500 64 1 6 2.6% 1334
H 0.15820 81 1 6 2.6% 1067
I 0.03125 16 1 24 10.4% 1432
J 0.06250 32 1 24 10.4% 725
K 0.09570 49 1 15 6.5% 487
L 0.12500 64 1 36 15.6% 366
M 0.25000 128 1 15 6.5% 187
Z 1.00000 512 3 2 0.9% 100

Total 230

Table: ESP benchmark characteristics for 512 cores cluster [Kramer, William TC; ’PERCU: A

Holistic Method for Evaluating High Performance Computing Systems]

Back.

34 / 34

	Introduction
	Experimentation in High Performance Computing

	Real-Scale Experimentation for Resource and Job Management Systems
	Methodology - Platforms and Workloads

	SLURM Experimental Analysis and Performance Evaluation
	Scheduling Efficiency
	Scalability
	Energy Efficient Management
	Network Topology Aware Placement

	Conclusions and Ongoing Works
	Appendix - References

