BULL’s Slurm Roadmap

Eric Monchalin, Head of Extreme Computing R&D
Outline

- Who’s Bull
- Slurm at Bull
- Latest and Ongoing contributions
- Long term vision
Who’s Bull?
Who’s Bull?

Visit us
Booth #2643 on floor 4
Bull Extreme Computing: a complete offering

What if unlimited innovation were as simple as this?

bullx supercomputers

extreme factory HPC Cloud

mobull container
Meeting customer requirements

Integrated
- Installed, deployed
- and operated as a
- single software

Complete
All functionalities
- Cluster management
- Development factory
- Execution environment
- Data storage and access

All sizes
- From department to Top 5

Open
- Best of breed
- Linux, OpenMPI, HPC Toolkit, Nagios, OFED, Slurm, Lustre, Shine, ...
- Bull added value

Flexible
- Modular:
 - Get what you need
 - when you need

Supercomputer suite
Advanced Edition

Bull added value
Supercomputer suite modularity

Application Management
 - Development Environment
 - bullx DE
 - Execution Environment
 - bullx BM
 - bullx MPI

Supercomputer Management
 - Management Center
 - bullx MC
 - Software Manager
 - Monitoring & Control Manager
 - Infrastructure Manager

Data Management
 - Parallel File System
 - bullx PFS

Operating System
 - bullx Linux
Slurm delivered with bullx Batch Manager

SLURM integrated into Bullx Super Computer Suite offer since 2006

bullx BM & Extended Offer

- Enhanced support and active development of SLURM
- Integration and support of commercial products: LSF & PBSPro
Outline

- Who’s Bull
- Slurm at Bull
- Latest and Ongoing contributions
- Long term vision
BULL involvement in Slurm community

- BULL initially started to work with SLURM in 2005
 - Development of new features
 - Bugs fixing
 - Tutorials and Trainings

- Collaborations with INRIA, CEA, SchedMD, ...

- BULL sponsored and organized with SchedMD the 2nd SLURM User Group Conference
 - User, Admin Tutorials
 - Technical presentation for developers
Largest BULL clusters powered by Slurm

<table>
<thead>
<tr>
<th>PetaFlops</th>
<th>1.25</th>
<th>1.7</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td># cores</td>
<td>140,000</td>
<td>90,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Memory (TB)</td>
<td>256</td>
<td>360</td>
<td>300</td>
</tr>
<tr>
<td>Storage (PB)</td>
<td>300</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>
Outline

- Who’s Bull
- Slurm at Bull
- Latest and Ongoing contributions
- Long term vision
Latest contributions

- Fine grain resource Management
 - cgroups support (CEA-BULL)
 - CPU Management enhancements and documentation

- Performance
 - Scalability / high throughput optimizations (CEA-BULL)
 - Preemption improvements (grace time delay)

- Cluster Integration / Utilization
 - Sview graphical tool enhancements
 - High Availability and event handling
Directions

From CPUs to Many Cores
(Scalability, Robustness, Resource Mngt)

Power Management

HPC On Demand
Cloud Computing
From CPUs to Many cores infrastructure

Fine grain resource Management
- Extension of cgroups support (BULL-CEA-LLNL)
- Multi-parameter / Multi-objective Scheduling (BULL-INRIA)

Performance Optimizations (BULL-CEA-INRIA)
- Whatever the cluster size
- Whatever the number of jobs

Resources Selection/Allocation Improvements
- Extension of CPU selection and allocation algorithms to support NUMA hierarchy
Power management

Power Management Integration (BULL-SchedMD)

Calculation of power consumption per job

- Either based on power sensors (node, switch, rack, etc)
- Or according to CPU utilization (cycles and frequencies)

Energy Efficient Scheduling

- Scheduling according to jobs' energy consumption needs and clusters' power states and thresholds
HPC on Demand / Cloud computing

HPC on Demand

- SLURM Integration upon BULL's extreme Factory HPC on Demand solution
- DRMAA API v2 upon SLURM
Outline

- Who’s Bull
- Slurm at Bull
- Latest and Ongoing contributions
- Long term vision
Exaflop era: explosion of resources

Moore law
- x32 in 8 years

Peta to Exascale
- x32 on node compute power
- x32 on number of nodes

100,000+ compute nodes

Explosion of ALUs
- Thread domination

Millions of cores
Tens of millions of threads
Offer new services to applications

- Optimize compute environment
 - Describe key characteristics of applications
 - Elect the most appropriate set of nodes
 - Manage resources with heuristics predicting future workload

- Migrate Processes
 - To reduce resource fragmentation
 - To isolate nodes with predicted hardware failures

- Allow dynamic application frameworks
 - To balance the load of the application
 - To optimize refinement of meshes
 - To restart lost processes in case of failure
First steps on the Exaflop the road

- Much more numerous
 - Scalability improvements
 - Elastic jobs to a better efficiency

- Much more heterogeneous
 - Re-design of SLURM's core algorithms for resources selection and allocation
 - Management of network and I/O bandwidth resources
bullx
instruments for innovation