All Things TRES
(Trackable RESources)
SC15

Brian Christiansen
brian@schedmd.com
Overview

- Need
- Setup
- Transition
- Reporting
- Fairshare
- Priority
Need

- Limits on more resources other than CPU/Memory/Nodes
 - GRES, Licenses, etc
- Method for accounting what resources were really used
 - Other than just cpu
- Easier way to add more limits (for developers)
 - No database alteration needed for future TRES
Setup

- All TRES are global and are defined in the slurm.conf
 - Available to all clusters
- AccountingStorageTRES
 - Used to define which TRES are to be tracked on the system. By default CPU, Energy, Memory, and Node are tracked. This will be the case whether specified or not.
 - AccountingStorageTRES=<TRES Type>[/<name>[[:<subname>]]]
 - Example
 - AccountingStorageTRES=gres/gpu:tesla,license/iop1,bb/cray
Transition

- sacctmgr
 - [Grp|Max] [cpu|mem|node]* limits now [Grp|Max]TRES*
 - GrpTRES=cpu=500,mem=10000,nodes=100
 - (GrpCpus=500 GrpMem=10000 GrpNodes=100)
 - Old definitions still work, for legacy scripts
 - -1 still how to remove limits GrpTRES=cpu=-1,mem=-1,nodes=1000
Transition

- sacctmgr
 - New/Extended Association|QOS options (all work for any TRES)
 - GrpTRES
 - GrpTRESMins
 - GrpTRESRunMins
 - MaxTRESPerJob
 - MaxTRESPerNode
 - MaxTRESPerUser*
 - MaxTRESMinsPerJob
 - MinTRESPerJob*

*only applicable to QOS
Transition

- scontrol/squeue/sacct
 - Can display TRES as well
 - ex. squeue -O jobid,name,tres
 - When a limit is reached the reason field in a job has a unique reason for each TRES type/limit combo
 - QOSGrpCpuLimit
 - QOSGrpMemLimit
 - AssocGrpCpuLimit
 - AssocGrpMemLimit
 - etc.
Reporting

- `sreport`
 - Previously would only report on CPU utilization
 - Now can report on **any** TRES (except Node)
Need more memory? Or less cpus?

```
$ sreport -tminper cluster utilization --tres="cpu,mem" start=2015-09-01T00:00:00

Cluster Utilization 2015-09-01T00:00:00 - 2015-09-01T23:59:59
Use reported in TRES Minutes/Percentage of Total

<table>
<thead>
<tr>
<th>Cluster</th>
<th>TRES Name</th>
<th>Allocated</th>
<th>Down</th>
<th>PLND Down</th>
<th>Reserved</th>
<th>Idle</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>compy</td>
<td>cpu</td>
<td>253440(20.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>1013760(80.00%)</td>
<td>1267200(100.00%)</td>
</tr>
<tr>
<td>compy</td>
<td>mem</td>
<td>4582306080(90.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>509145120(10.00%)</td>
<td>0(0.00%)</td>
<td>5091451200(100.00%)</td>
</tr>
</tbody>
</table>
```
GPUs being used?

```bash
$sreport -tminper cluster utilization --tres="cpu,gres/gpu" start=2015-09-02T00:00:00
```

<table>
<thead>
<tr>
<th>Cluster</th>
<th>TRES Name</th>
<th>Allocated</th>
<th>Down</th>
<th>PLND Down</th>
<th>Reserved</th>
<th>Idle</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>compy</td>
<td>cpu</td>
<td>1140480(90.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>126720(10.00%)</td>
<td>0(0.00%)</td>
<td>1267200(100.00%)</td>
</tr>
<tr>
<td>compy</td>
<td>gres/gpu</td>
<td>63360(20.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>253440(80.00%)</td>
<td>316800(100.00%)</td>
</tr>
</tbody>
</table>
Which GPUs are being used most?

```bash
$ sreport -tminper cluster utilization --tres="gres/gpu:k40,gres/gpu:k80" start=2015-09-02T00:00:00
```

Cluster Utilization 2015-09-02T00:00:00 - 2015-09-02T23:59:59
Use reported in TRES Minutes/Percentage of Total

<table>
<thead>
<tr>
<th>Cluster</th>
<th>TRES Name</th>
<th>Allocated</th>
<th>Down</th>
<th>PLND Down</th>
<th>Reserved</th>
<th>Idle</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>compy</td>
<td>gres/gpu:k40</td>
<td>63360(20.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>253440(80.00%)</td>
<td>316800(100.00%)</td>
</tr>
<tr>
<td>compy</td>
<td>gres/gpu:k80</td>
<td>190080(60.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>126720(40.00%)</td>
<td>316800(100.00%)</td>
</tr>
</tbody>
</table>
Fairshare

- Previously only total cpus was accounted for in fairshare
- If a job used 1 CPU and all the memory on the machine the job was only charged for 1 CPU when it really used the whole node
- Now, any TRES can be accounted for in fairshare
 - TRESBillingWeights
Fairshare

- TresBillingWeights configured per partition
- Billing weights are specified as a comma-separated list of
 \(<TRES\ Type>=<TRES\ Billing\ Weight>\)\ pairs
- TRESBillingWeights=CPU=1.0,Mem=0.25G,GRES/gpu=2.0
- Two methods of calculating billable TRES
 - MAX_TRES
 - SUM of TRES
Fairshare

- **SUM of TRES**
 - Default
 - \[\text{SUM}(<\text{TRES}>*<\text{TRES Weight}>, \ldots)\]
 - Good if you want to account for what you are using

- **MAX_TRES**
 - PriorityFlags=MAX_TRES
 - \[\text{MAX(Node TRES)} + \text{SUM(Global TRES)}\]
 - Good if you want to account for any one resource that is blocking other jobs from running on a node
Fairshare

- TRESBillingWeights=CPU=1.0, Mem=0.25G
- 16CPU, 64GB nodes

SUM of TRES:

<table>
<thead>
<tr>
<th>Job</th>
<th>CPUs</th>
<th>Mem GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job1</td>
<td>(1 1.0) + (600.25) = (1 + 15) = 16</td>
<td></td>
</tr>
<tr>
<td>Job2</td>
<td>(16*1.0) + (1 *0.25) = (16+.25) = 16.25</td>
<td></td>
</tr>
<tr>
<td>Job3</td>
<td>(161.0) + (600.25) = (16+ 15) = 31</td>
<td></td>
</tr>
</tbody>
</table>

MAX_TRES:

<table>
<thead>
<tr>
<th>Job</th>
<th>CPUs</th>
<th>Mem GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job1</td>
<td>MAX((1 1.0), (600.25)) = 15</td>
<td></td>
</tr>
<tr>
<td>Job2</td>
<td>MAX((15*1.0), (1 *0.25)) = 15</td>
<td></td>
</tr>
<tr>
<td>Job3</td>
<td>MAX((161.0), (640.25)) = 16</td>
<td></td>
</tr>
</tbody>
</table>
Priority

- **PriorityWeightTRES**
 - List of TRES Types and weights
 - PriorityWeightTRES=CPU=1000,Mem=2000,GRES/gpu=3000

- Control how much a TRES contributes to the job’s priority

- Node TRES (i.e. CPU, Mem, GRES, Node) are normalized against total TRES configured in a partition

- Global TRES (i.e. license, bb) are normalized against the global amount in the system
Priority - Example

- AccountingStorageTRES=cpu,mem,gres/gpu
- PriorityWeightTRES=cpu=1000,gres/gpu=3000
- If a partition has 80 cpus and a job uses 8, then the priority factor is .1 (or 10%)

<table>
<thead>
<tr>
<th>JOBID</th>
<th>PRIORITY</th>
<th>AGE</th>
<th>FAIRSHARE</th>
<th>TRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>625</td>
<td>0</td>
<td>500</td>
<td>cpu=125</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>0</td>
<td>500</td>
<td>cpu=100</td>
</tr>
<tr>
<td>6</td>
<td>812</td>
<td>0</td>
<td>500</td>
<td>cpu=12,gres/gpu=300</td>
</tr>
</tbody>
</table>
Conclusion

- More possibilities for limits
- Ability to report on different resource utilization
- Customizable fairshare prioritization
- Finer grained priority calculations
Questions?