Heterogeneous Job Support

Tim Wickberg
SchedMD

SC17
Submitting Jobs

- Multiple independent job specifications identified in command line using “:” separator
- The job specifications are sent to slurmctld daemon as a list in a single RPC
- The entire request is validated and accepted or rejected
- Response is also a list of data (e.g. job IDs)

```bash
$ salloc -n1 -C haswell : -n256 -C knl bash
```
Batch Jobs

- Job components specified using “:” command line separator OR
- Use “#SBATCH” options in script separating components using “#SBATCH packjob”
- Script runs on first component specified

```
$ echo my.bash
#!/bin/bash
#SBATCH -n1 -C haswell
#SBATCH packjob
#SBATCH -n256 -C knl
...
$ sbatch my.bash
```
Job Data Structure

- Each component of a heterogeneous job has its own job structure entry
- “Head” job has pointers to all components (like job arrays)
- New fields
 - JobID - Unique for each component of the heterogeneous job
 - PackJobID - Common value for all components
 - PackJobOffset - Unique for each component, zero origin
 - PackJobIdSet - List of all job IDs in the heterogeneous job
Sample Job Data

<table>
<thead>
<tr>
<th>Job ID</th>
<th>Pack Job ID</th>
<th>Pack Job Offset</th>
<th>Pack Job ID Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>123</td>
<td>0</td>
<td>123-127</td>
</tr>
<tr>
<td>124</td>
<td>123</td>
<td>1</td>
<td>123-127</td>
</tr>
<tr>
<td>125</td>
<td>123</td>
<td>2</td>
<td>123-127</td>
</tr>
<tr>
<td>126</td>
<td>123</td>
<td>3</td>
<td>123-127</td>
</tr>
<tr>
<td>127</td>
<td>123</td>
<td>4</td>
<td>123-127</td>
</tr>
</tbody>
</table>
Job Management

- Standard format ID for managing heterogeneous jobs is "<PackJobID>+<PackJobOffset>"

```bash
$ squeue --job=93
JOBID PARTITION NAME USER ST TIME NODES NODELIST
 93+0 debug test adam  R 4:56   1 nid00001
 93+1 debug test adam  R 4:56   2 nid000[10-11]
 93+2 debug test adam  R 4:56   4 nid000[20-23]
```
Job Management Examples

Update all components of a heterogeneous job
$ scontrol update jobid=93 timelimit=1-0

Update specific component of a heterogeneous job
$ scontrol update jobid=123+1 account=abc

Cancel all components of a heterogeneous job
$ scancel hold 123

Get accounting information about all components of a heterogeneous job
$ sacct -j 89

Get accounting information about specific component of a heterogeneous job
$ sacct -j 89+4
Job Steps

- `srun` launches application only in `PackJobOffset=0` by default
- Use `--pack-group` option to launch step in other components
Job Step Examples

$ salloc -N1 : -N2 bash
Granted job allocation 6819

$ squeue

<table>
<thead>
<tr>
<th>JOBID</th>
<th>PARTITION</th>
<th>NAME</th>
<th>USER</th>
<th>ST</th>
<th>TIME</th>
<th>NODES</th>
<th>NODELIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>6819+0</td>
<td>debug</td>
<td>test</td>
<td>adam</td>
<td>R</td>
<td>0:02</td>
<td>1</td>
<td>nid00001</td>
</tr>
<tr>
<td>6819+1</td>
<td>debug</td>
<td>test</td>
<td>adam</td>
<td>R</td>
<td>0:02</td>
<td>2</td>
<td>nid0000[2-3]</td>
</tr>
</tbody>
</table>

$ srun hostname
nid00001

$ srun --pack-group=1 hostname
nid00002
nid00003

$ srun --pack-group=0,1 --label hostname
0: nid00001
1: nid00002
2: nid00003
MPI Support

- Environment variables and Slurm’s MPI plugins establish environment so that entire environment (possibly spanning multiple job allocations) looks like a single job allocation
- Job step can **not** span job components in Slurm version 17.11
 - More work required for MPI support
 - Only OpenMPI with pmi2 plugin supported today and special Slurm configuration required to enable use
 (SchedulerParameters=enable_pack_step)
 - Addressed in version 18.08
Environment Variables

- Component specific information identified with “PACK_GROUP_#” suffix
- Otherwise global job information reported

```
SLURM_JOB_ID=6819
SLURM_JOB_ID_PACK_GROUP_0=6819
SLURM_JOB_ID_PACK_GROUP_0=6820
SLURM_JOB_NODELIST=nid0000[1-3]
SLURM_JOB_NODELIST_PACK_GROUP_0=nid00001
SLURM_JOB_NODELIST_PACK_GROUP_1=nid0000[2-3]
```
Burst Buffers

- Tied to specific job ID
- Use persistent burst buffer to access from all components

```bash
#!/bin/bash
#SBATCH -n 1 -C haswell
#BB create_persistent name=alpha capacity=10TB access=striped type=scratch
#DW persistentdw name=alpha
#SBATCH packjob
#SBATCH -n 256 -C knl
#DW persistentdw name=alpha
...
```
Scheduling

- Only the backfill scheduler will allocate resources
- All components must be allocated resources at the same time
- Backfill scheduler resource reservations for all components synchronized
- Limits of all job components considered before trying to start any component
- All components must be allocated resources on different nodes (mostly a limitation of MPI API)
Limitations

- Arrays of heterogeneous jobs not supported
- All components must run in same cluster (not across federation)
- Not supported with Cray ALPS
- Limited support for steps spanning heterogeneous jobs until version 18.08