
Doing More with Slurm

Advanced Capabilities

Shawn Hoopes, Director – Training Services

shawn@schedmd.com

● Policy-driven, open source, fault-tolerant, and
highly scalable workload management and job
scheduling system

● Some Key Functions

● Allocates exclusive and/or non-exclusive access to resources
to users for some duration of time for a workload

● Provides a framework for starting, executing, and monitoring
work on the set of allocated nodes

● Arbitrates contention for resources by managing a queue of
pending work

● Enforces customized workload policies to grant and/or
restrict access to compute resources

What is Slurm…

● Features Details

● Straight-forward batch and serial job submission methods

● Easy to administer

● Plug-in infrastructure

● Very highly scalable

● Secure and fault-tolerant

● Flexible priority and fairshare policies

● Powerful database integration for job detail tracking, reporting, and policy enforcement, as well
as job script storage and QOS definitions

● Policy-driven preemption methods

What is Slurm…

● Some Advanced Features

● NSS Slurm, pam_slurm_adopt, scrontab

● Configless Slurm

● Job dependencies

● Heterogenous job submission

● MPI Support via srun

● Cgroup v1 and v2 support

● Detailed cpu-binding options

● Job Profiling

● Node Sets and Dynamic Node provisioning

What is Slurm…

Rank System Cores Rpeak

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11,

HPE
8,730,112 1,685.65 PFlop/s

2 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D,

Fujitsu
7,630,848 537.21 PFlop/s

3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11,

HPE
1,110,144 214.35 PFlop/s

4 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband,

IBM
2,414,592 200.79 PFlop/s

5 Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband,

IBM / NVIDIA / Mellanox
1,572,480 125.71 PFlop/s

6 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway,

NRCPC
10,649,600 125.44 PFlop/s

7 Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10,

HPE
761,856 93.75 PFlop/s

8 Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband,

Nvidia
555,520 79.22 PFlop/s

9 Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000,

NUDT
4,981,760 100.68 PFlop/s

10 Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11,

HPE
319,072 61.61 PFlop/s

● Maintainers and Supporters of Slurm

● Only organization providing level-3 support

● Training

● Consultation

● Custom Development

But what is SchedMD?

● GPUs - AI Workloads

● Hybrid Cloud

● AI Tooling Integration

Industry Trends
Manufacturing & EDA

Healthcare & Lifesciences

Financial Services & Insurance

Energy

Government

Academic

GPU Scheduling for

AI Workloads

Fine-Grained GPU Control

All options apply to salloc, sbatch and srun commands

● --cpus-per-gpu= CPUs required per allocated GPU
● -G/--gpus= GPU count across entire job allocation
● --gpu-bind= Task/GPU binding option
● --gpu-freq= Specify GPU and memory frequency
● --gpus-per-node= Works like “--gres=gpu:#” option today
● --gpus-per-socket= GPUs per allocated socket
● --gpus-per-task= GPUs per spawned task
● --mem-per-gpu= Memory per allocated GPU

Examples of Use

$ sbatch --ntasks=16 --gpus-per-task=2 my.bash

$ sbatch --ntasks=8 --ntasks-per-socket=2 --gpus-per-socket=k80:1 my.bash

$ sbatch --gpus=16 --gpu-bind=closest --nodes=2 my.bash

$ sbatch --gpus=k80:8,a100:2 --nodes=1 my.bash

Configuring GPUs

● GPUs fall under the Generic Resource (GRES) plugin
○ Node-specific resources

● Requires definition in slurm.conf and gres.conf on node
● GRES can be associated with specific device files (e.g. specific GPUs)
● GPUs can be autodetected with NVML or RSMI libraries
● Sets CUDA_VISIBLE_DEVICES environment variable for the job

Restricting Devices with Cgroups

● Uses the devices subsystem
○ devices.allow and devices.deny control access to devices
○ All devices in gres.conf that the job does not request are added to

devices.deny so the job can’t use them
● Must be a Unix device file. Cgroups restrict devices based on major/minor

number, not file path (/dev/nvidia0)
● GPUs are the most common use case, but any Unix device file can be

restricted with cgroups

NVIDIA MIG Support

● Configured like regular GPUs in Slurm
● Fully supported by task/cgroup and --gpu-bind
● AutoDetect support
● Make it work with CUDA_VISIBLE_DEVICES
● MIGs must be manually partitioned outside of Slurm beforehand via nvidia-

smi

Hybrid Cloud Autoscaling

Hybrid Cloud

Cloud Enablement

● Power Saving module
○ Requires 3 parameters to enable

■ ResumeProgram
■ SuspendProgram
■ SuspendTime (Either global or

Partition)
○ Other important parameters

■ ResumeTimeout
■ SuspendTimeout

Power State Transition - Resume

IDLE

POWERED_DOWN ~

ALLOCATED / MIXED

POWERING_UP #
ALLOCATED / MIXED

Node State

Configuring RunningJob State Completing

Power State Transition - Suspend

IDLE

IDLE

POWERING_DOWN %

Node State

SuspendTime SuspendTimeOut

IDLE

POWERED_DOWN ~

What about the Data?

● Most common question - How do we get my data from onprem to cloud?
● Previous best option - mini-workflow w/ job dependency

Stage-in job > Application job > Stage-out job

● Benefit: easy to increase the number of nodes involved in moving the data

New Option: Lua Burst Buffer plugin

● Originally developed for Cray Datawarp
○ Intermediate storage - in between slow long-term storage and the fast memory

on compute nodes
● Asynchronously calls an external script to not interfere with the scheduler
● Generalized this function so you don’t need Cray Datawarp or actual

hardware “burst buffers” or Cray’s API
● Good for Data movement or provisioning cloud nodes

○ Anything you think you want to do while the job is pending (or at other
job states)

Asynchronous “stages”

● Stage in - called before the job is scheduled, job state == pending
○ Best time for Cloud data staging

● Pre run - called after the job is scheduled, job state == running + configuring
○ Job not actually running yet

● Stage out - called after the job completes, job state == stage out
○ Job cannot be purged until this is done

● Teardown - called after stage out, job state == complete

AI Tooling Integration:
Enter the REST API

New Integration Requirements

What is Slurm REST API

Client JSON/YAML

GET

POST

PUT

DELETE

HTTP Server

Client sends a request.

(NOT srun,sbatch,salloc)
Server sends a response.

HTTP Method

slurmrestd

A tool that runs inside of the Slurm perimeter that will translate JSON/YAML
requests into Slurm RPC requests

slurmctld

slurmrestd clients

REST API

slurmdbd

SLURM

RPC

Slurm REST API Architecture (rest_auth/jwt)

Munge Perimeter

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

slurmrestd

client
client

client
client

client
client

client

AuthAltTypes Perimeter - JWT authentication

cluster network

Slurm REST API Architecture (rest_auth/jwt + Proxy)

Site Authentication PerimeterAuthAltTypes Perimeter

Munge Perimeter

slurmctld

slurmdbd

slurmd
slurmd

slurmd
slurmd

slurmd

slurmrestd

Authenticating

HTTP proxy

Authenticated client

TLS wrapped

Site

Authentication Server

JSON/YAML output

● Slurmrestd uses content (a.k.a. openapi) plugins. These plugins have been made
global to allow other parts of Slurm to be able to dump JSON/YAML output.

● New output formatting (limited to these binaries only):
○ sacct --json or sacct --yaml
○ sinfo --json or squeue --yaml
○ squeue --json or squeue --yaml

● Output is always same format of latest version of slurmrestd output.
○ Formatting arguments are ignored for JSON or YAML output as it is

expected that clients can easily pick and choose what they want.

$ sinfo --json

{

"meta": {

"plugin": {

"type": "openapi\/v0.0.37",

"name": "Slurm OpenAPI v0.0.37"

},

"Slurm": {

"version": {

"major": 22,

"micro": 0,

"minor": 5

},

"release": "21.08.6"

}

},

"errors": [

],

"nodes": [

{

"architecture": "x86_64",

"burstbuffer_network_address": "",

"boards": 1,

"boot_time": 1646380817,

"comment": "",

"cores": 6,

"cpu_binding": 0,

"cpu_load": 64,

"extra": "",

"free_memory": 3208,

"cpus": 12,

"last_busy": 1646430364,

"features": "",

"active_features": "",

…

…

"gres": "",

"gres_drained": "N\/A",

"gres_used": "scratch:0",

"mcs_label": "",

"name": "node00",

"next_state_after_reboot":

"invalid",

"address": "node00",

"hostname": "node00",

"state": "idle",

"state_flags": [

],

"next_state_after_reboot_flags": [

],

"operating_system": "Linux 5.4.0-

100-generic #113-Ubuntu SMP Thu Feb 3

18:43:29 UTC 2022",

"owner": null,

"partitions": [

"debug"

],

"port": 6818,

"real_memory": 31856,

"reason": "",

"reason_changed_at": 0,

"reason_set_by_user": null,

"slurmd_start_time": 1646430151,

"sockets": 1,

"threads": 2,

"temporary_disk": 0,

"weight": 1,

"tres":

"cpu=12,mem=31856M,billing=12",

…

…

"operating_system": "Linux 5.4.0-

100-generic #113-Ubuntu SMP Thu Feb 3

18:43:29 UTC 2022",

"owner": null,

"partitions": [

"debug"

],

"port": 6818,

"real_memory": 31856,

"reason": "",

"reason_changed_at": 0,

"reason_set_by_user": null,

"slurmd_start_time": 1646430151,

"sockets": 1,

"threads": 2,

"temporary_disk": 0,

"weight": 1,

"tres":

"cpu=12,mem=31856M,billing=12",

"slurmd_version": "22.05.0-0pre1",

"alloc_memory": 0,

"alloc_cpus": 0,

"idle_cpus": 12,

"tres_used": null,

"tres_weighted": 0.0

}

]

}

How To Get There with Slurm

Large Energy Company

• Using their scheduler for many years

○ Can’t just flip a switch and go to production

• Massive scale - multiple international sites, nodes and
workloads

• Many integrations required

3-4 Months to Production

Three Migration Steps
● Admin/User education

○ Training - Help admins identify the commonalities and learn the Slurm way
○ Wrappers - a bridge to migration not a crutch

■ LSF, Grid Engine - command and submission
■ PBS - command, submission, environment variables, #PBS scripts

● Policy replication
○ Reevaluate policies

■ Are we continuing to produce technical debt due to “doing things how we’ve always
done them?”

○ Optimizing for scale and throughput - 1 million jobs/day
■ Some Financial sites doing up to 15 million/day

● Tooling integration
○ Most time consuming of the journey

Questions?

Thank You

schedmd.com http://slurm.schedmd.com

shawn@schedmd.com

https://www.schedmd.com/
https://slurm.schedmd.com/

