
Slinky: The Missing Link
Between Slurm and Kubernetes

Tim Wickberg
Skyler Malinowski

CANOPIE-HPC 2024 @ SC24



Introduction

2



Survey questions:

● Who here is running Slurm in production?
● Who here is running Kubernetes in production?
● Who here is running both?

○ Who here has them isolated from one another?
○ Who here has them coordinating access… somehow?

3



What this talk is not

● An overview of Slurm's container integration
○ Please see separate presentations on Slurm's OCI container support

■ Nate Rini will be presenting on this at the Slurm booth this week
○ Or NVIDIA's Pyxis plugin for Slurm

■ Or NERSC's shifter plugin, or Apptainer, or Singularity, ...
● Instead, I'm leaning on the "New Orchestration Paradigms" part of CANOPIE's backronym

4



Cloud Native vs HPC 
Perspectives

5



Warning!

● This is meant as a high-level - vastly simplified - view of two complex ecosystems
● Slurm and Kubernetes are both open-source

○ There are patches, plugins, and configurations for both that look radically different 
than what I've described here

○ Both systems continue to evolve well beyond their original designs

6



Perspectives - Kubernetes

● Kubernetes was built to manage long-running processes
○ Designed to orchestrate multiple microservices

■ Usually in support of one or more web services
○ Core architecture permits scaling cluster size according to external demand

■ And managing availability and redundancy for the constituent services
● Cloud-native systems assume "infinite" resources are available

○ And the workload is finite
■ Albeit, with fluctuations in instantaneous demand

● Prioritization not a central aspect of cloud orchestration
○ All parts of the workload are expected to be running

7



Perspectives - Kubernetes

● Kubernetes approaches scheduling at a different level - node centric
○ Scheduling API granularity is fixed at the node level

■ Extensions such as NVIDIA's DRA allows for GPU management
○ No model for CPU core affinity

■ Can't - centrally - ensure a pod won't share a core with other workloads
○ Scheduling semantics reflecting cloud workload demands, rather than HPC

■ E.g, Affinity and Anti-Affinity scheduling policies
● Anti-Affinity is used to ensure pod instances don't share a node

○ Critical for architecting redundant systems
○ But doesn't translate into traditional HPC batch scheduling

● Services are containerized by default
● System use is generally programmatic, through tools like Terraform, Helm

8



Perspectives - HPC Batch Scheduling

● HPC systems assume system size is fixed
○ And the workload is infinite
○ Queue prioritization is thus critical

● "Slurm is a policy engine"
● Slurm manages a number of intertwined HPC system management tasks

○ Job queuing and prioritization - scheduling
○ Job accounting
○ Control user access to compute resources (cgroups, pam_slurm_adopt)
○ Enable large-scale concurrent job launch (MPI, PMIx, nss_slurm, sbcast)

● Jobs assume access to a usable, fully-featured, default Linux environment
○ Containerization - including Slurm's built-in container support - is optional

● Jobs are usually ad-hoc scripts, submitted through the command line
○ Newer features such as Slurm's RESTful API can support more programmatic 

interaction, but are not yet as widely adopted

9



Current Kubernetes Batch Support

● Kubernetes has limited support for batch workflows
○ Modeled as either individual "pods", or as "jobs"
○ Most workflows use "pods" due to issues around the "jobs" model

● Prioritization models are limited
○ FIFO is most common

10



Current Kubernetes Batch Support

● MPI-style workload support is weak
○ Concurrent pod scheduling is not guaranteed by default Kubernetes components

■ Default behavior for HPC batch schedulers
■ Kubernetes calls this "gang scheduling", HPC calls this… "scheduling"

● Unrelated to Slurm's "gang scheduling", which manages time-slicing 
resources on a node

● "MPI Operator" is the most commonly used component to ensure pods launch roughly 
simultaneously

○ But does not scale - struggles to launch above more than 80 ranks
■ Citation - https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011

○ No native access to interconnects (Infiniband, NVLink, etc)
● The open-secret in the AI/ML space is that almost all training workloads run on Slurm

11

https://doi.org/10.1109/CANOPIE-HPC56864.2022.00011


Kubernetes Scheduling Challenges

● The Kubernetes Scheduling API is… complex
○ Core parts of what the default scheduler implementation expects are exposed 

throughout the control plane, rather than being isolated internally

12



Convergence of HPC and Cloud-Native

● So… why am I talking about this?
● There's an opportunity to bridge the gap between HPC and Cloud-Native workloads

○ Find a way to bring familiar commands, tooling, prioritization models into newer 
architectures

● Clusters will continue to evolve
○ Users are interested in access to new tools and technologies
○ A lot of newer workload tools assuming Kubernetes by default

● Both ecosystems stand to benefit from each other
○ Kubernetes from increased throughput, different approaches to job scheduling and 

prioritization
○ Slurm from newer cloud native technologies and tools, and increased focus on 

flexibility in support of new user workflows

13



What is Slinky?

14



What is Slinky?

15



What is Slinky?

● A toolkit of components to enable Slurm integration with Kubernetes
○ Open-source, Apache 2.0 licensed
○ Initial components were released on November 8th
○ SlinkyProject on GitHub
○ Direct link to overview page - slinky.ai 

● Uses Slurm's REST API for all core interaction
○ Wrapped into a client Golang library

16

https://slinky.ai


What is Slinky?

● Current design has three main aspects:
○ The Slurm Operator

■ Managing Slurm running within Kubernetes
○ Assorted Tooling

■ Helm charts, Dockerfiles, Container Images, Slurm REST Client Library
○ The Slurm Bridge (Future)

■ Integration with Kubernete's scheduling API
● Use Slurm's scheduling wherewithal to manage a converged pool of 

computing resources
○ Run K8s workloads through the Kubelet
○ Slurm workloads through slurmd

17



What is Slinky not?

18



What is Slinky not?

● Slinky is not a direct part of Slurm
○ Although Slinky's design has had - and will continue to have - influence on Slurm 
○ Separate development team within SchedMD
○ Separate license - Apache 2.0

■ Slurm's license is "GPL v2 or later, with an OpenSSL exception"
● Slinky is not included in SchedMD's support for Slurm
● Slinky is not current intended as an out-of-the-box solution

○ Instead intended to provide flexibility in how it is adapted into an environment
○ Assumes some willingness to alter the various components as part of this adaptation

■ Changing the Dockerfiles, Helm charts, and even Golang code

19



Slinky Components - Today

20



Slinky Components

● Slurm Operator
○ Kubernetes Operator for Slurm

● Slurm Exporter
○ Prometheus collector and exporter for metrics extracted from Slurm

● Slurm Client
○ Slurm versioned REST API endpoints are multiplexed for seamless request/response

● Helm charts
○ Slurm Cluster
○ Slurm Operator
○ Slurm Exporter

● Container images
○ Slurm Daemons
○ Slurm Operator
○ Slurm Exporter

21



Slurm Deployment

22



Slurm – Big Picture

● Slurmctld
○ Slurm Control Plane

● Slurmd
○ Slurm Worker Agent

● Slurmrestd
○ Slurm REST API Agent

● Slurmdbd
○ Slurm Database Agent

● Sackd
○ Slurm Auth/Cred Server
○ Typically runs on login nodes

23



Helm Chart

● Configless
○ Slurm configuration files 

are distributed by the Slurm 
Control Plane (slurmctld)

● auth/slurm
○ Instead of MUNGE

● auth/jwt
○ Alternative authentication 

mechanism
○ Issue token for Slurm REST 

API (slurmrestd) 
communication

24

https://slurm.schedmd.com/configless_slurm.html
https://slurm.schedmd.com/authentication.html#slurm
https://slurm.schedmd.com/jwt.html


Slurm Exporter

● Metrics collected from Slurm cluster
○ Uses the Slurm client for communication

● Prometheus collector and exporter
● Consumable by:

○ Horizontal Pod Autoscaler (HPA)
○ Grafana

25

https://prometheus.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://grafana.com/


Slurm Operator

26



Kubernetes – Big Picture

27



Big Picture

1. Install Slinky Custom Resource 
Definitions (CRDs)

2. Add/Delete/Update Slinky 
Custom Resource (CR)

3. Network Communication

28



Operator Pattern
● Operators are software extensions to 

Kubernetes that make use of Custom 
Resources (CRs) to manage 
applications and their components.

○ CRs are extensions of the 
Kubernetes API.

● Operators follow Kubernetes 
principles, notably the control loop.

○ In robotics and automation, a 
control loop is a non-terminating 
loop that regulates the state of a 
system.

29



Custom Resources

● Cluster CR
○ Represents a Slurm cluster, by Slurm REST API (slurmrestd)
○ Define server URL and JWT auth token secret
○ Reconciles to internal Slurm client 

● NodeSet CR
○ Represents a set of Slurm nodes (slurmd)
○ Define pod spec, Slurm specific options 
○ Reconciles to Kubernetes pods

30



Slurm Operator – Cluster Client

1. User installs a Cluster CR
2. Cluster Controller creates Slurm Client 

from Cluster CR
3. Slurm Client polls Slurm resources (e.g. 

Nodes, Jobs)
4. Update Cluster CR Status

31



Slurm Operator – NodeSet Scale-Out

1. User installs NodeSet CR
2. NodeSet Controller creates NodeSet 

Pods from NodeSet CR pod spec
a. On process startup: the slurmd 

registers to slurmctld
3. Update NodeSet CR Status

a. Kubernetes NodeSet Pod Status
b. Slurm Node Status

32



Slurm Operator – NodeSet Scale-In

1. User updates NodeSet CR replicas
2. NodeSet Controller cordons NodeSet 

pod scale-in candidates:
a. Candidates are determined based 

on Slurm node and job information
b. Cordoned pods will be drained in 

Slurm, in preparation for safe 
termination and deletion

3. NodeSet Controller terminates NodeSet 
pod after fully draining a candidate

a. On pod preStop: Slurm node 
deletes itself from Slurm 

4. Update NodeSet CR Status
a. Kubernetes NodeSet Pod Status
b. Slurm Node Status

33



NodeSet Auto-Scale

1. Metrics are collected and exported
2. Horizontal Pod Autoscaler (HPA) scales 

NodeSet CR replicas, based on:
a. Current metrics data
b. User defined scaling policy

3. The Slurm Operator reconciles the 
adjusted NodeSet CR replicas value:

a. Scale-in (replicas reduced)
b. Scale-out (replicas increased)

34



Slurm Client

35



OpenAPI Specification (OAS) – Background

● The OpenAPI Specification (OAS) was donated to the Linux Foundation under the OpenAPI 
Initiative (originally known as Swagger) in 2015.

● The OpenAPI Specification (OAS) defines a standard, language-agnostic interface to HTTP 
APIs which allows both humans and computers to discover and understand the capabilities 
of the service without access to source code, documentation, or through network traffic 
inspection.

● An OpenAPI definition can then be used by documentation generation tools to display the 
API, code generation tools to generate servers and clients in various programming 
languages, testing tools, and many other use cases.

36

https://swagger.io/specification/
https://swagger.io/specification/


OpenAPI Client Generator

De Facto:

● OpenAPITools/openapi-generator
○ Supports multiple languages
○ Written in Java

● OpenAPITools/openapi-generator-cli
○ Supports multiple languages
○ Written in TypeScript, wraps OpenAPITools/openapi-generator

Community:

● oapi-codegen/oapi-codegen
○ Supports only Golang
○ Written in Golang
○ slurm-client uses this

37

https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator-cli
https://github.com/OpenAPITools/openapi-generator
https://github.com/oapi-codegen/oapi-codegen


Slurm Client – Architecture

● Generate OpenAPI Spec (OAS) bindings 
for each Slurm versioned endpoint

○ v0.0.40
○ v0.0.41
○ v0.0.42

● Informer polls the Slurm REST API and 
stores Slurm object data in Cache

○ Mitigates overloading Slurm REST 
API when querying the same data

○ Similar to how the Kubernetes client 
library functions

● Can avoid Cache
○ POST, DELETE
○ GET + client option

38



Slinky Roadmap

39



Future Directions

● Next major development goal is the Slurm Bridge
○ Slinky's Kubernetes Scheduler plugin

■ Schedule both Slurm jobs as well as Kubernetes jobs on the same hardware
○ Target is Spring '25, ahead of KubeCon Europe
○ Will require building a DRA CPU Core management plugin

■ Can operate without, but requires limiting nodes to running either K8s pods or 
Slurm jobs, not both simultaneously

40



DRA for Cores

● "Dynamic Resource Allocation" (DRA) is an API to request and reserve specific resources 
within a Kubernetes node

○ Used to manage access to GPUs on the node
○ Plugins can be added to control additional resources

■ Intent is to add Core management through this interface
● Giving the Slurm Bridge a way to communicate core allocations for the 

Kubernetes jobs
○ And avoid contention between Slurm vs Kubernetes jobs sharing a 

compute node
■ SchedMD working with partners to get this built as an out-of-tree driver

● Want to get this added as a central capability in a future K8s release

41



Slurm Bridge Design

● Translate K8s pods into "placeholder" Slurm jobs
○ Automatically translate resource requests

■ Core count, memory amount, GPUs
○ Support custom annotations for Slurm-specific settings

■ Such as the partition, account, QoS, time limit
● When the placeholder job is scheduled, inform the Kubernetes scheduler API of the node 

placement
○ Inject resource claims for DRA

■ For GPUs
■ And - once developed - for Cores

42



Slurm 
Scheduler 

Plugin

Slurm 
REST API

43



Questions?

44



Shameless Plugs

45



Slurm at SC'24

● Slurm Booth - #2809 
● Slurm Community Birds-of-a-Feather

○ Thursday, 12:15pm, Room B203
○ Slurm Roadmap, Community Survey

46



SchedMD is hiring

● https://www.schedmd.com/careers/

47

https://www.schedmd.com/careers/


48


