
Slurm Community
Birds-of-a-Feather

Danny Auble
Tim Wickberg

SC24

Welcome

Welcome

● The BoF is being broadcast on the SC24 Digital Experience
○ Please use the microphones to ask questions so everyone in the room, and everyone

watching remotely, can hear
○ Danny will be monitoring online questions

■ Note that there's a broadcast delay online
● If it's pertinent to a specific slide, please mention the slide number

○ Feel free to ask questions throughout
■ Although we may defer, or ask to discuss offline

3

4

Survey

Community Survey

https://schedmd.com/survey

5

https://schedmd.com/survey

Slurm 24.05, 24.11,
and Beyond

Tim Wickberg
Chief Technology Officer

Development Cycle

Release Cycle

● Major releases are now made every nine six months
● Version is the two digit year, two digit month:

○ 24.05 - May 2024
○ 24.11 - November 2024
○ 25.05 - May 2025

● Major releases are supported for 18 months
○ Currently: 24.11, 24.05, and 23.11

● Maintenance releases are made roughly monthly
○ Usually only for the most recent major release

■ One main exception: security releases are made for all supported major
releases

Revised Release Cycle

● Direct upgrades from 3 prior major releases will be supported starting with 24.11
○ Previously upgrades were only supported from the 2 prior major releases

Development Process

● Most larger work is handled through sponsored projects
○ SchedMD support only covers maintenance

● Some projects - those of wider community interest - may be handled internally on a
best-effort basis

Slurm 24.05 - May 2024

topology/block

● Additional optimization for "block" based topologies
● "Exclusive" block access

○ Allow a job to indicate that it should be the only occupant of the associated blocks
○ Avoid contention between performance-sensitive workloads

● Allow "Segment" size specification
○ E.g., if a 40-node job naturally decomposes into 4x 10-node sections, allow a

specification of "--segment 10" to alter the topology allocation strategy to avoid
straddling internal block boundaries.

Node Features

● Allow node features to be flagged as not requiring a node reboot to change
○ E.g., allow for GPU mode changes without taking the entire node offline

MaxTRESRunMinsPerUser / PerAccount

● New QOS limits reduce configuration complexity
○ Automatically group and limit utilization within the QOS by User or Account

Adjustments to the "Coordinators" status

● Adjust the Coordinator to only permit accounting changes that fit within constraints
applied to the account
○ E.g., do not allow the coordinator to set MaxJobs=10000 on an individual user if the

account has a lower limit of MaxJobs=10 already in effect
○ The high-level view is that the coordinator is permitted to tweak settings within the

scope of the existing account, but should not be able to override the size/shape of
the restrictions at the account level

● Options to disable the coordinator status in the Slurm Controller or the SlurmDBD
○ E.g., if a site wants coordinators to handle job workflow changes

(hold/suspend/requeue) but not making accounting changes, they can limit the
permission to the Slurm Controller-only

Prolog/Epilog

● New PrologFlags=RunInJob option to run the Prolog/Epilog within cgroups corresponding
to the job itself
○ Implies PrologFlags=contain

■ Scripts will be run/managed by the "extern" slurmstepd process, instead of
directly invoked by slurmd

○ Avoid, e.g., having the script accidentally make GPU mode changes to cards that
aren't allocated to the job

ReservedCoresPerGPU

● Dedicate cores on node to GPU work
○ Cores only assigned if the corresponding GPU has been allocated to the job
○ Allows for CPU-based workloads to better overlap into GPU nodes, without

threatening to starve the GPU workloads and risk idling the (expensive) GPUs
● Currently, the same use case can be partially covered by using the MaxCPUsPerNode

setting on a Partition
○ But that doesn't easily scale with a heterogeneous mix of nodes, and requires

splitting work across multiple partitions

Job State Monitoring API

● New API call / squeue option / REST mode that only returns the job state
● Designed for external workflow tools, and avoids performance issues when returning the

entire job state
○ Will use state tracking that is not tied to the "job lock" in slurmctld, which also greatly

improves performance in the face of heavy RPC load

auth/slurm Improvements

● Allow for non-disruptive auth/slurm key rotation
● Add hash/sha3 plugin as an alternative to hash/k12 for network traffic validation

Step Management Performance

● Decouple job step management from the Slurm Controller
● Manage per-job on the "batch" host assigned to the compute job
● Allows for massively improved job step launch scalability

○ And significantly reduces load on the Slurm Controller, allowing it to focus on job
scheduling

Slurm 24.11 - November 2024

New gpu/nvidia plugin

● New plugin that does not use NVIDIA libraries
○ Unlike gpu/nvml plugin, which has suffered from various CUDA packaging issues

■ And requires CUDA to be installed at build time
● Builds everywhere
● Uses standard kernel interfaces for GPU enumeration

○ /proc/driver/nvidia/gpus/%s/information
○ /sys/bus/pci/drivers/nvidia/%s/local_cpulist

● Adds Autodetect=nvidia for gres.conf
● Significant limitations

○ Can't detect MIGs
○ Can't detect NVlink topology
○ Can't provide energy statistics

● Hoping to encourage NVIDIA to provide more interfaces under sysfs

GPU detection in 'slurmd -C'

$ slurmd -C
NodeName=nuclear CPUs=12 Boards=1 SocketsPerBoard=1 CoresPerSocket=6
ThreadsPerCore=2 RealMemory=31840 Gres=gpu:nvidia_geforce_gtx_1650_ti:1
Found gpu:nvidia_geforce_gtx_1650_ti:1 with Autodetect=nvml (Substring
of gpu name may be used instead)
UpTime=3-18:23:04

23

Job submission against multiple QOSes

● Similar to submissions against multiple Partitions, --qos now supports a comma-separated
list of QOSes to test against
○ Expectation is that these should have different prioritization
○ But will schedule in whichever is available ASAP

● Additional lookup calls now available in job_submit.lua to help sites automatically set or
filter these submissions
○ slurm.get_qos_priority() returns the priority for a given QOS name
○ job_desc["assoc_qos"] field shows all QOSes the user has access to

24

QOS-based accounting reports

● New AccountUtilizationByQOS option in sreport

25

Topology + Backfill Work

● New experimental option - "bf_topopt_enable"
● Allows an "oracle" function to evaluate the fragmentation level of a block topology network

○ And decide whether that job launch should be delayed to a future backfill interval in
the interest of reducing system fragmentation

26

"scontrol listjobs" and "scontrol liststeps"

● Complement existing "scontrol listpids" command
○ Works directly on the local node
○ Output in --json/--yaml available for all three

27

sbcast --no-allocation

● Use sbcast outside of a job allocation
● Only available to root or SlurmUser
● Requires an explicit nodelist (--nodelist)

28

Hostlist Functions

● Hostlist Functions extend some of the concepts that the NodeList introduced previously
● In most locations, allows for use of:

○ "feature{foo}", which substitutes all nodes with Feature=foo
○ "switch{switch1}" which substitutes all nodes attached directly to switch1

■ "block{block1}" for topology/block
○ "switchwith{node0001}" which substitutes all nodes on the leaf switch that node0001

is connected to
■ "blockwith{node0001}" for topology/block

29

Performance work

● Improvements to:
○ Scheduling interfaces, cutting down redundant placement checks
○ Bitstring handling

■ bit_test() replaced with a macro within the bitstring code
■ Internal cache for node_record_count length bitstrings to avoid constant

malloc()/free() churn
○ List construction

■ Significantly reduce malloc()/free() pressure
■ Internalize list node structures within larger blocks to take advantage of cpu

caches
○ Database handling

■ Generate db_index within slurmctld, rather than slurmdbd
● Significant improvement in performance for workloads relying on

frequent requeues

30

New TaskPluginParam=OOMKillStep option

● If any tasks within the step are killed, kill the entire step

31

DataParserParameters

● New DataParserParameters option controls --json / --yaml output formats
○ Allows sites to specify default data_parser plugins, and default options
○ E.g., default to the v41 format, with fast parsing enabled:

DataParserParameters=v0.0.41+fast

32

Added "sacctmgr ping"

● Pings the slurmdbd
● Complements long-standing "scontrol ping" command

33

Ephemeral cluster startup quality-of-life improvements

● On first start, slurmctld will retry the connection to slurmdbd indefinitely
● On first start, slurmd and sackd will retry the connection to fetch "configless" config files

from slurmctld indefinitely
● Helpful when deploying ephemeral Slurm clusters

○ Avoids needing to explicitly sequence the components

34

HPE Slingshot

● Removed "Instant On" support
● Added "Collectives" support

○ Requires support in the fabric manager, due out in an HPE update soon

35

conmgr

● Not intended to be directly visible, but considerable work in 24.11 went into refactoring
slurmctld RPC handling mechanisms into a centralized thread-pool model
○ As well as unifying the signal handling for each daemon

● Replaces prior ephemeral thread-per-connection model
● Introduces a number of new tunable settings, see SlurmctldParameters and

SlurmdParameters for further details

36

Slurm 25.05 - May 2025

Network Traffic Encryption

● Encrypt all Slurm traffic
○ Optional

● New "certmgr" plugin interface to help with certificate management on the compute nodes

Further conmgr work

● Send all RPC responses asynchronously from slurmctld
● Directly manage TLS connection state

39

"minibatch" operation

● Extend the new stepmgr code to allow steps to queue
○ Stepmgr would dispatch the command or script to launch directly

■ Rather than the srun command

40

… and Beyond

SLUID - Slurm Lexicographically-sortable Unique ID

● 64-bit identifier for each job
○ Replaces db_index

■ Available on systems without SlurmDBD
○ Changes on each requeue

■ JobID does not - this is why the tuple of (JobID, Start Time) is what needs to be
tracked externally

● Example: s8FXJCCS3F9Z00
○ Leads "s", then 13 base-32 characters (0-9, A-Z excluding ILOU)
○ "sacct --format=sluid" is the one place you can see these directly in 24.11

43

Survey Results

44

45

46

Questions?

47

Slinky: The Missing Link
Between Slurm and Kubernetes

What is Slinky?

49

What is Slinky?

50

What is Slinky?

● These slides are a subset of those presented as the keynote at CANOPIE-HPC earlier this
week

● That full deck is available:
○ https://slurm.schedmd.com/SC24/Slinky-CANOPIE.pdf

51

https://slurm.schedmd.com/SC24/Slinky-CANOPIE.pdf

What is Slinky?

● A toolkit of components to enable Slurm integration with Kubernetes
○ Open-source, Apache 2.0 licensed
○ Initial components were released on November 8th
○ SlinkyProject on GitHub
○ Direct link to overview page - slinky.ai

● Uses Slurm's REST API for all core interaction
○ Wrapped into a client Golang library

52

https://slinky.ai

What is Slinky?

● Three main components:
○ The Slurm Operator

■ Managing Slurm running within Kubernetes
○ Assorted Tooling

■ Helm charts, Dockerfiles, Container Images, Slurm REST Client Library
○ The Slurm Bridge (Future)

■ Integration with Kubernete's scheduling API
● Use Slurm's scheduling wherewithal to manage a converged pool of

computing resources
○ Run K8s workloads through the Kubelet
○ Slurm workloads through slurmd

53

What is Slinky not?

54

What is Slinky not?

● Slinky is not a direct part of Slurm
○ Although Slinky's design has had - and will continue to have - influence on Slurm
○ Separate development team within SchedMD
○ Separate license - Apache 2.0

■ Slurm's license is "GPL v2 or later, with an OpenSSL exception"
● Slinky is not included in SchedMD's support for Slurm
● Slinky is not currently intended as an out-of-the-box solution

○ Instead intended to provide flexibility in how it is adapted into an environment
○ Assumes willingness to alter the various components as part of this adaptation

■ Changing the Dockerfiles, Helm charts, and even Golang code

55

Slinky Components - Today

56

Slinky Components

● Slurm Operator
○ Kubernetes Operator for Slurm

● Slurm Exporter
○ Prometheus collector and exporter for metrics extracted from Slurm

● Slurm Client
○ Slurm versioned REST API endpoints are multiplexed for seamless request/response

● Helm charts
○ Slurm Cluster
○ Slurm Operator
○ Slurm Exporter

● Container images
○ Slurm Daemons
○ Slurm Operator
○ Slurm Exporter

57

Slinky Roadmap

58

Future Directions

● Next major development goal is the Slurm Bridge
○ Slinky's Kubernetes Scheduler plugin

■ Schedule both Slurm jobs as well as Kubernetes jobs on the same hardware
○ Target is Spring '25, ahead of KubeCon Europe
○ Ideally made in conjunction with a new DRA CPU Core management plugin

■ Can operate without, but requires limiting nodes to running either K8s pods or
Slurm jobs, not both simultaneously

59

DRA for Cores

● "Dynamic Resource Allocation" (DRA) is an API to request and reserve specific resources
within a Kubernetes node
○ Used to manage access to GPUs on the node
○ Plugins can be added to control additional resources

■ Intent is to add Core management through this interface
● Giving the Slurm Bridge a way to communicate core allocations for the

Kubernetes jobs
○ And avoid contention between Slurm vs Kubernetes jobs sharing a

compute node
■ SchedMD working with partners to get this built as an out-of-tree driver

● Want to get this added as a central capability in a future K8s release

60

Slurm Bridge Design

● Translate K8s pods into "placeholder" Slurm jobs
○ Automatically translate resource requests

■ Core count, memory amount, GPUs
○ Support custom annotations for Slurm-specific settings

■ Such as the partition, account, QoS, time limit
● When the placeholder job is scheduled, inform the Kubernetes scheduler API of the node

placement
○ Inject resource claims for DRA

■ For GPUs
■ And - once developed - for Cores

61

Questions?

62

63

