
15-09-2015

SLURM User Group 2015

Power Adaptive Scheduling

Yiannis Georgiou (BULL)
David Glesser (BULL)
Matthieu Hautreux (CEA)
Denis Trystram (LIG)

Motivations

2

▶ Need for centralized mechanism to dynamically adapt the
instantaneous power consumption of the whole platform

– Reducing the number of usable resources or running them
with lower power

▶ Technique to plan in advance for future power adaptations
– In order to align upon dynamic power provisioning and

electricity prices

Introduction

3

▶Power adaptive scheduling within SLURM is a new
feature appearing in 15.08

– Initial algorithms and prototype made by CEA in
2013

– A second prototype (extended version of the first)
has been studied, experimented and published in
[Georgiou et al. HPPAC-2015] by BULL + LIG

▶Final implementation (BULL) based upon the
layouts framework and its API functions (CEA)

 Yiannis Georgiou, David Glesser, Denis Trystram
Adaptive Resource and Job Management for limited power consumption
In proceedings of IPDPS-HPPAC 2015

Power adaptive scheduling in 15.08

4

The implementation appeared in 15.08 has the following
characteristics:

▶Based upon layouts framework
– for internal represantation of resources power consumption

– Only logical/static represantation of power

– Fine granularity down to cores

▶Reductions take place through following techniques
coordinated by the scheduler:
– Letting Idle nodes

– Powering-off unused nodes (using default SLURM mecanism)

– Running nodes in lower CPU Frequencies (respecting –-cpu-freq
allowed frequencies)

Set/Modify/View Powercap Value

5

▶Initially with parameter in slurm.conf

[root@nd25 slurm]#cat /etc/slurm.conf |grep Power
PowerParameters=cap_watts=INFINITE

▶Dynamically with scontrol update

[root@nd25 slurm]#scontrol update powercap=1400000

▶ In advance with watts reservation (scontrol create res)

[root@nd25 slurm]#scontrol create res FLAG=ANY_NODES starttime=now+11minutes
duration=16 Watts=532224 Users=root

▶View with scontrol show
●

 [root@nd25 slurm]#scontrol show powercap
MinWatts=564480 CurrentWatts=809934 PowerCap=INFINITE PowerFloor=0
PowerChangeRate=0AdjustedMaxWatts=1774080 MaxWatts=1774080

Power adaptive scheduling
– algorithm simple version -

6

▶Reductions only by keeping nodes idle and shut-down (if
powersave mode activated)

▶Considering power consumption per node level

Layouts=power

Power adaptive scheduling
– algorithm simple version -

Logic within the Powercapping Check
▶Calculate what power consumption the cluster would

have if the job was executed
▶If lower than the allowed power budget, proceed with

job
▶Else keep job pending and check next one

Architecture of the Powercapping Check
▶Based upon the different nodes bitmaps states
▶Using Layouts only for keeping the values for the

nodes power consumption (only get, no set)

8

[root@nd25 slurm]#cat /etc/layouts.d/power.conf

Entity=Cluster Type=Center IdleSumWatts=0 MaxSumWatts=0 Enclosed=virtual[0-5039]

Entity=virtual[0-5039] Type=Node IdleWatts=103 MaxWatts=308

Power adaptive scheduling
– algorithm simple version – Configuration

8

[root@nd25 slurm]#cat /etc/slurm.conf |grep power
Layouts=power

▶Set parameter within slurm.conf

▶Set new /etc/layouts.d/power.conf file
– Examples exist in slurm code base in etc/layouts.d.*example

9

[root@nd25 slurm]#vi src/layouts/power/default.c

const layouts_keyspec_t keyspec[] = {
 /* base keys */
 {"IdleWatts", L_T_UINT32},
 {"MaxWatts", L_T_UINT32},
 /* parents aggregated keys */
 {"IdleSumWatts", L_T_UINT32,
 KEYSPEC_UPDATE_CHILDREN_SUM, "IdleWatts"},
 {"MaxSumWatts", L_T_UINT32,
 KEYSPEC_UPDATE_CHILDREN_SUM, "MaxWatts"},
 {NULL}
};
const char* etypes[] = {
 "Center",
 "Node",
 NULL
};

Layouts Power code structure (truncated)
 - src/layouts/power/default.c -

Power adaptive scheduling
– algorithm extended version -

10

▶Reductions through DVFS, idle and shut-down nodes (if
power-save mode activated)

▶Considering core level power consumption

Layouts=power/cpufreq

Power adaptive scheduling
– algorithm extended version -

Logic within the Powercapping Check
▶Calculate what power consumption the cluster would have if the

job was executed
▶If higher than the allowed power budget, check if DVFS is allowed

for the job (usage of –-cpu-freq parameter with MIN and MAX)
– If yes then calculate what power consumption the cluster would

have if the job was executed with its different allowed CPU-
Frequencies

– Try with the optimal CPU-Frequency which is the one that would
allow all the idle resources to become allocated

▶If neither the optimal nor the MIN allowed CPU-Frequency for the
job results in lower power consumption than the powercap then
job pending else running

Power adaptive scheduling
– algorithm extended version -

Architecture of the Powercapping Check
▶Based upon the different nodes bitmaps states
▶Using Layouts for collecting and setting nodes and

cores power consumption (both get and set functions)
▶Each CPU Frequency is represented/considered to have

its own power consumption (based on measures or
hardware provider specifications)

13

[root@nd25 slurm]#cat /etc/layouts.d/power.conf

Entity=Cluster Type=Center CurrentSumPower=0 IdleSumWatts=0 MaxSumWatts=0
Enclosed=virtual[0-5039]

Entity=virtualcore[0-80639] Type=Core CurrentCorePower=0 IdleCoreWatts=7
MaxCoreWatts=22 CurrentCoreFreq=0 Cpufreq1Watts=12 Cpufreq2Watts=13
Cpufreq3Watts=15 Cpufreq4Watts=16 Cpufreq5Watts=17 Cpufreq6Watts=18
Cpufreq7Watts=20

Entity=virtual0 Type=Node CurrentPower=0 IdleWatts=0 MaxWatts=0 DownWatts=14
PowerSaveWatts=14 CoresCount=0 LastCore=15 Enclosed=virtualcore[0-15]
Cpufreq1=1200000 Cpufreq2=1400000 Cpufreq3=1600000 Cpufreq4=1800000
Cpufreq5=2000000 Cpufreq6=2200000 Cpufreq7=2400000 NumFreqChoices=7

Entity=virtual1 Type=...

Power adaptive scheduling
– algorithm extended version – Configuration

13

[root@nd25 slurm]#cat /etc/slurm.conf |grep power
Layouts=power/cpufreq

▶Set parameter within slurm.conf

▶Set new /etc/layouts.d/power.conf file

14

[root@nd25 slurm]#vi src/layouts/power/cpufreq.c

const layouts_keyspec_t keyspec[] = {
 /* base keys */
 {"CurrentCorePower", L_T_UINT32},
 {"Cpufreq1", L_T_UINT32},
 {"Cpufreq1Watts", L_T_UINT32},
 /* parents aggregated keys */
 {"CurrentSumPower", L_T_UINT32,
 KEYSPEC_UPDATE_CHILDREN_SUM, "CurrentPower"},

{"CurrentPower", L_T_UINT32,
 KEYSPEC_UPDATE_CHILDREN_SUM, "CurrentCorePower"},
 {NULL}
};
const char* etypes[] = {
 "Center",
 "Node",

 "Core",
 NULL
};

Layouts Power code structure (truncated)
 - src/layouts/power/cpufreq.c -

Experiments Testbed

15

▶ Consist of executing the Light-ESP synthetic workload composed of 230 jobs of 8
different job profiles (sizes, execution times)

▶ Deploy an emulated cluster with 5040 emulated nodes (16 cores / node) using 18
physical nodes

– Upon an bullx B510 cluster with Intel Sandybridge (16cores/node, 64GB)

– Using “multiple-slurmd” emulation technique

– Layouts=power/cpufreq configured

▶ Experiments have as goal to:
– Validate that powercapping works correctly

– Compare the scaling of the powercapping logic, layouts framework and API
functions

16

Power adaptive scheduling validation
– powercap set on-the-fly with scontrol update-

17

Power adaptive scheduling validation
– powercap set in advance with reservation -

18

Power adaptive scheduling – scaling validation
– No powercap set -

19

Power adaptive scheduling scaling validation
– With powercap INFINITE -

Discussion

▶Power adaptive scheduling logic works fine but we can
see that optimizations are needed in the layouts
usage to reach the performance of bitmaps

– This is due to the fact that we still check the power
of each node individually, this should be done
globally with consistent synchronization of layouts

– The synchronization part of the layouts pull and
push functions update the whole key/values store,
it should update only the affected neighbours

– Need of new layouts API functions to get/set
multiple entities

20

Power adaptive scheduling

21
Yiannis Georgiou, David Glesser, Denis Trystram
Adaptive Resource and Job Management for limited power consumption
In proceedings of IPDPS-HPPAC 2015

System utilization in terms of cores (top) and power (bottom) for MIX policy
during a 24 hours workload of Curie system with a powercap reservation (hatched area)
of 1 hour of 40% of total power. Cores switched-off represented by a dark-grey hatched
area.

Power adaptive scheduling

22
Yiannis Georgiou, David Glesser, Denis Trystram
Adaptive Resource and Job Management for limited power consumption
In proceedings of IPDPS-HPPAC 2015

Powercap of 60% with mainly big
jobs and SHUT policy

Powercap of 40% with mainly small
jobs and DVFS policy

Discussion
Power Adaptive Scheduling and PowerPlugin

▶ The Power adaptive scheduling and the PowerPlugin logic (Cray) provide 2
different approaches for powercapping

– The first one is based on logical, static power values and theoretical
calculations for altering scheduling to achieve a global power budget

– the former one based on the physical, real power values, and an
integration to a hardware mechanism that will adapt each nodes power
consumption to align to a global power budget

▶ Disadvantages:
– Power adaptive scheduling is based on approximations so result may not

be optimal either in system utilization or final power consumption

– PowerPlugin will change the node configuration of jobs and depending on
the executed application it will affect its turnaround time which may not be
welcome

▶ Study ways of possible integration of both

23

Current and Future Works

▶ Further optimizations in the logic to improve scalability
▶ Make consistent the internal state of layouts (scontrol show layouts)
▶ Create new layouts API functions mainly to cover the previous points

– Multi-entity get/set

– Intelligent pull/push to modify only affected neighbours

▶ Provide ways to represent the real physical information of power consumption
from the sensors to the layouts

– Integration with real sensors data as used within AcctGatherEnergy plugin
(IPMI, RAPL)

– Add values such as -Latest20AverageWatts- or -Latest100AverageWatts- to
capture time factor of an already used node

▶ Study and extent to dynamic DVFS support
– Change CPU Frequency on the fly during job execution

– This may help when both entering or coming out of powercap period

24

Atos, the Atos logo, Atos Consulting, Atos Worldgrid, Worldline,
BlueKiwi, Canopy the Open Cloud Company, Yunano, Zero Email, Zero
Email Certified and The Zero Email Company are registered trademarks
of Atos. July 2014. © 2014 Atos. Confidential information owned by
Atos, to be used by the recipient only. This document, or any part of it,
may not be reproduced, copied, circulated and/or distributed nor
quoted without prior written approval from Atos.

12-05-2015

SLURM User Group 2015

Thanks

For more information please contact:
T+ 33 1 98765432
F+ 33 1 88888888
M+ 33 6 44445678
firstname.lastname@atos.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

