
Enhancing Startup Performance of Parallel
Applications with SLURM

Sourav Chakraborty, Hari Subramoni, Adam Moody(1),
Jonathan Perkins, and Dhabaleswar. K. Panda

Department of Computer Science & Engineering,
The Ohio State University

(1) Lawrence Livermore National Laboratory

•  Introduction
•  Challenges
•  PMI Ring Extension
•  Non-blocking PMI Extensions
•  Conclusion

SLURM User Group Meeting '15

Overview

2

Current Trends in HPC

•  Supercomputing systems scaling rapidly
–  Multi-core architectures and
–  High-performance interconnects

•  InfiniBand is a popular HPC interconnect
–  259 systems (51.8%) in top 500

•  MPI and MPI+X programming models used
by vast majority of HPC applications

•  Job launchers for high performance
middleware like MPI need to become more
scalable to handle this growth!

Stampede@TACC

SuperMUC@LRZ

Nebulae@NSCS

3 SLURM User Group Meeting '15

Why is Fast Startup Important

•  Developers spend a lot of time launching the application
•  Reducing job launch time saves developer-hours

Developing and debugging

•  Complex software have a lot of features to test
•  Large number of short-running tests need to be launched

Regression testing

•  Full-system size jobs to stress-test the network and software

System testing

•  An application restart is similar to a launching a new job
•  Faster startup means less time recovering from a failure

Checkpoint-restart

4 SLURM User Group Meeting '15

•  InfiniBand is a low-latency, high-bandwidth network widely
used in HPC clusters

•  Lacks efficient hostname based lookup
•  Requires some out-of-band communication before

connection establishment
•  Most MPI libraries use the Process Management Interface

(PMI)[1] as the out-of-band communication substrate

SLURM User Group Meeting '15

Requirement for Out-of-band Startup Mechanisms
in High-performance MPI Libraries

5

[1] PMI: A Scalable Parallel Process-management Interface for Extreme-scale Systems; Balaji, Pavan and Buntinas, Darius
and Goodell, David and Gropp, William and Krishna, Jayesh and Lusk, Ewing and Thakur, Rajeev; EuroMPI’10

•  Portable interface between middleware (e.g. MPI) and
resource manager (e.g. SLURM, mpirun_rsh, Hydra)

•  External process acts as the client, resource manager works
as the server

•  PMI provides these broad functionalities:
–  Creating/connecting with existing parallel jobs
–  Accessing information about the parallel job or the node on which a

process is running
–  Exchanging information used to connect processes together
–  Exchanging information related to the MPI Name publishing interface

SLURM User Group Meeting '15

Process Management Interface (PMI)

6

USE PMI-2!

SLURM User Group Meeting '15 7

0

5

10

15

20

25

30

35

16

32

64

12
8

25
6

51
2

1K

2K

4K

8K

T
im

e
Ta

ke
n

(s
ec

)

Number of Processes

MPI_Init

PMIv1

PMIv2

6X

29.33

4.79
0
5

10
15
20
25
30
35
40
45

16

32

64

12
8

25
6

51
2

1K

2K

4K

8K

T
im

e
Ta

ke
n

(s
ec

)
Number of Processes

Hello World

PMIv1

PMIv2

41.11

7.87

5.2x

Supported by most MPI libraries including MVAPICH2, OpenMPI

SLURM User Group Meeting '15 8

MVAPICH2
•  High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RoCE

–  MVAPICH (MPI-1) , Available since 2002

–  MVAPICH2 (MPI-2.2, MPI-3.0 and MPI-3.1), Available since 2004

–  MVAPICH2-X (Advanced MPI + PGAS), Available since 2012

–  Support for GPGPUs (MVAPICH2-GDR), Available since 2014

–  Support for MIC (MVAPICH2-MIC), Available since 2014

–  Support for Virtualization (MVAPICH2-Virt), Available since 2015

–  Used by more than 2,450 organizations in 76 countries

–  More than 285,000 downloads from the OSU site directly
–  Empowering many TOP500 clusters (Jun‘15 ranking)

•  8th ranked 519,640-core cluster (Stampede) at TACC

•  11th ranked 185,344-core cluster (Pleiades) at NASA

•  22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others

–  Available with software stacks of many IB, HSE, and server vendors including RedHat and SuSE

–  http://mvapich.cse.ohio-state.edu

•  Empowering Top500 systems for over a decade
–  System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->

–  Stampede at TACC (8th in Jun’15, 462,462 cores, 5.168 PFlops)

•  PMI provides a global key-value store where each process can
store or retrieve data from

•  PMI2_KVS_Put (key, value)
–  Store a new <key,value> pair

•  PMI2_KVS_Fence ()
–  Publish/synchronize the KVS across processes
–  Blocking operation, needs to be called by every process

•  PMI2_KVS_Get (…, key, …)
–  Lookup a <key,value> pair from the KVS

SLURM User Group Meeting '15

Current PMI2 APIs

9

•  MPI libraries use the Put-Fence-Get operations to exchange
their high-performance network endpoint addresses

•  Each process Puts its own network endpoint address into
the key-value store and calls Fence

•  Each process does up to (Number of Processes – 1) Gets to
look up the network endpoint address of remote processes

SLURM User Group Meeting '15

Use of PMI in High-performance MPI Libraries

10

•  Key-Value exchange
over PMI takes more
time as system size
increases

•  Other costs are
relatively constant

•  All numbers taken on
TACC Stampede with 16
processes/node

•  Based on MVAPICH2-2.0b
& SLURM-2.6.5

SLURM User Group Meeting '15 11

Breakdown of MVAPICH2 Startup

0

0.5

1

1.5

2

2.5

32 64 128 256 512 1K 2K 4K 8K

T
im

e
Ta

ke
n

fo
r

M
P

I_
In

it

(S
ec

on
ds

)

Number of Processes

PMI Exchanges
Shared Memory
Other

•  Introduction
•  Challenges
•  PMI Ring Extension
•  Non-blocking PMI Extensions
•  Conclusion

SLURM User Group Meeting '15

Overview

12

Time Spent in Different PMI Operations

•  One Put followed by a
Fence and multiple Gets

•  Put & Get are local
operations and take
negligible time

•  Time taken by Fence is
the bottleneck[2]

SLURM User Group Meeting '15 13

0

100

200

300

400

500

600

700
16

32

64

12
8

25
6

51
2 1k

2k

4k

8k

16
k

T
im

e
Ta

ke
n

(m
ill

is
ec

on
ds

)

Number of Processes

Fence

Put

Gets

[2] PMI Extensions for Scalable MPI Startup S. Chakraborty , H. Subramoni , J. Perkins , A. Moody , M. Arnold , and D. K.
Panda EuroMPI/ASIA 2014, Sep 2014

Time Spent in Different PMI Operations

•  Time taken by Fence is
determined by Data
transferred

•  Fence with no data
movement is much faster

•  Can we come up with
other primitives to
improve the performance?

SLURM User Group Meeting '15 14

0

100

200

300

400

500

600

700
16

32

64

12

8
25

6
51

2 1k

2k

4k

8k

16
k

T
im

e
Ta

ke
n

(m
ill

is
ec

on
ds

)

Number of Processes

100% Put + Fence

50% Put + Fence

Fence Only

•  Introduction
•  Challenges
•  PMI Ring Extension
•  Non-blocking PMI Extensions
•  Conclusion

SLURM User Group Meeting '15

Overview

15

SLURM User Group Meeting '15

Using High Performance Networks for PMI

16

Job	 Launcher
Low	 Performance	 Communication	

Protocols	 (PMI2)

High	 Performance	 Cluster	 Middleware	 (MPI)

PUT

FENCE

GET

Low	 Performance	 Networks

Barrier
Global
Data	

Transfer

Exchange	 of	 End-‐point	 Information	 for	 High-‐performance	 Networks

Communication	 Related	 to	 Job	 Startup

Complete	 Out-‐of-‐Band	 Exchange

Complete	 EP	 Information

Job	 Launcher
Low	 Performance	 Communication	

Protocols	 (PMI2)
High	 Performance	 Communication	

Protocols	 (IB	 Verbs)

High	 Performance	 Cluster	 Middleware	 (MPI)

PUT

FENCE

GET

Low	 Performance	 Networks

Send Recv RDMA

High	 Performance	 Networks

Barrier
Global
Data	

Transfer

Exchange	 of	 End-‐point	 Information	 for	 High-‐performance	 Networks

Communication	 Related	 to	 Job	 Startup

Complete	 Out-‐of-‐Band	 Exchange Partial	 Out-‐of-‐Band	 Exchange

Neighbor	 EP	
Information

Complete	 EP	
InformationComplete	 EP	 Information

The PMI Ring Extension

int PMIX_Ring (
 const char value[], // IN – Own value
 int *rank, // OUT – Rank in ring
 int *size, // OUT – Size of ring
 char left[], // OUT – Value from rank-1
 char right[], // OUT – Value from rank+1
 int maxvalue // IN – Max length of values
);

rank and size can be different from PMI size and rank
Already available in slurm-15.08.0 (thanks to Adam Moody)

SLURM User Group Meeting '15 17

Using PMI Ring Extension

SLURM User Group Meeting '15 18

Each process acquires its own
InfiniBand address

PMIX_Ring – Exchange address with
Left and Right neighbor processes

Form a Ring over InfiniBand using
exchanged addresses

Perform Allgather operation over
InfiniBand ring to gather addresses
from all other processes

MVAPICH2 Startup with PMIX_Ring

•  Amount of data
transferred over TCP
sockets reduced
significantly

•  Bulk of the data is
exchanged over high-
performance network
(InfiniBand)

SLURM User Group Meeting '15 19

0

0.5

1

1.5

2

2.5

32 64 128 256 512 1K 2K 4K 8K

T
im

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

InfiniBand Exchanges

PMI Exchanges

Shared Memory

Other

MPI_Init and Hello World with PMIX_Ring

•  MPI_Init time
reduced by 34%

•  Time taken by
Hello_World
improved by 33% at
8,192 processes

SLURM User Group Meeting '15 20

0

1

2

3

4

5

6

7
16

32

64

12
8

25
6

51
2 1k

2k

4k

8k

T
im

e
Ta

ke
n

(s
ec

on
ds

)

Number of Processes

Hello World (Default)

Hello World (Ring)

MPI_Init (Default)

MPI_Init (Ring)

Application Performance with PMIX_Ring

•  NAS Parallel
Benchmarks at
1,024 processes,
class B data

•  Up to 20%
improvement in
total execution
time

SLURM User Group Meeting '15 21

0

1

2

3

4

5

6

7

EP MG CG FT BT SP

T
im

e
Ta

ke
n

(s
ec

on
ds

)

Benchmark

Default

Ring

•  Introduction
•  Challenges
•  PMI Ring Extension
•  Non-blocking PMI Extensions
•  Conclusion

SLURM User Group Meeting '15

Overview

22

•  Process manager (slurmd) is responsible for progressing
the PMI exchanges. Can be overlapped with:

•  Different initialization related tasks, e.g.
–  Registering memory with the HCA
–  Setting up shared memory channels
–  Allocating resources

•  Any computation between MPI_Init and the first
communication, e.g.
–  Reading input files
–  Preprocessing the input
–  Dividing the problem into sub-problems

SLURM User Group Meeting '15 23

Non-blocking PMI Extensions

Proposed Non-blocking PMI Extensions

SLURM User Group Meeting '15 24

int PMIX_Allgather (
 const char value[],
 void *buffer);
•  Each process provides an input value and an output buffer
•  Values from each process are collected into the output buffer
•  Values are ordered by their source rank

PMIX_Request
•  Request objects are used to track completions of non-blocking operations
•  Each non-blocking operation returns a handle to the request object
•  Actual type of the object is determined by the implementation

int PMIX_Wait (PMIX_Request request);
•  Wait until the operation specified by the request object is complete

Proposed Non-blocking PMI Extensions

SLURM User Group Meeting '15 25

int PMIX_Iallgather (
 const char value[],
 void *buffer,
 PMIX_Request *request_ptr);
•  Non-blocking version of the PMIX_Allgather
•  Return does not indicate completion
•  Output buffer will contain valid data only after successfully invoking the

corresponding PMIX_Wait

int PMIX_KVS_Ifence (PMIX_Request *request_ptr);
•  Non-blocking version of the PMI2_KVS_Ifence

•  All functions return 0 on success and and error code on failure
•  PMI2_KVS_* can not be invoked between calling PMIX_KVS_Ifence and calling

PMIX_Wait

Using Non-blocking PMI Extensions

Current
MPI_Init() {
 PMI2_KVS_Put();
 PMI2_KVS_Fence();
 /* Do other tasks */
}
Connect() {
 PMI2_KVS_Get();
 /* Use values */
}

Proposed
MPI_Init() {
 PMIX_Iallgather();
 /* Do other tasks */
}

Connect() {
 PMIX_Wait();
 /* Use values */
}

SLURM User Group Meeting '15 26

•  Put-Fence-Get combined into a single function
•  Collective across all processes
•  Optimized for symmetric data movement

int PMIX_Allgather (
 const char value[], //UTF-8, NULL terminated
 void *buffer //size = NumProcs*MaxLength
);

•  Equivalent to Fence with rank used as the key
•  Values are directly accessed from the result buffer
•  Data from rank r is available at buffer[r*MaxLength]
•  Further optimization by parameterizing MaxLength

SLURM User Group Meeting '15 27

Design of PMIX_Allgather

4. srun sends
gathered data to

children

3. Forward
values to parent

srun

Design of PMIX_Allgather

•  Processes send the value to
parent slurmd

•  slurmd’s propagate the values
(tagged with the source rank) to
their parent

•  srun sends the aggregated data to
children

•  slurmd’s order the data by rank
and sends to client processes

•  More efficient packing/less data
movement

•  Avoids the expensive hash-table
creation step

SLURM User Group Meeting '15 28

srun

slurmd

slurmd

Client
Process

1. Send value to
local slurmd

2. Forward values to
parent slurmd

5. Forward gathered
data to children

6. Order values
by rank

7. Send ordered
values to clients

Data Packing and Movement in Fence

SLURM User Group Meeting '15 29

Data Packing and Movement in Allgather

Header Rank Length Key Value

Data packed for transfer between slurmd’s

Data stored in
Hash table in
slurmd

Data packed for transfer
between slurmd’s

Data sent to client
process from slurmd

Data from Process 1 Data from Process 2 Data from Process N

…

Data from Process 2 Data from Process 1 Data from Process N

…

286 KB @ 8K
processes

208 KB @ 8K
processes
(27% less)

•  Allgather performs 38%
better than Fence at 16K
processes

•  Reduced data movement
and processing overhead

•  All numbers taken on TACC
Stampede with 16 processes/
node

•  Based on MVAPICH2-2.0b &
SLURM-2.6.5

SLURM User Group Meeting '15 30

Performance of PMIX_Allgather

0

0.4

0.8

1.2

1.6
32

64

12
8

25
6

51
2

1K

2K

4K

8K

16
K

T
im

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

PMI2_KVS_Fence

PMIX_Allgather 38%

•  Constant MPI_Init time
using non-blocking PMI calls

•  MPI_Init using Iallgather is
288% faster than using
Fence at 16K processes

•  Replacing the blocking
Fence with blocking
Allgather yields 21% benefit

SLURM User Group Meeting '15 31

Performance of MPI_Init with Non-blocking PMI

0.4

0.8

1.2

1.6

2
32

64

12
8

25
6

51
2

1K

2K

4K

8K

16
K

T
im

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Fence

Ifence

Allgather

Iallgather

288%

•  Sources of improvement
–  Overlap inside MPI_Init,

depends on library and
system size

–  Overlap outside MPI_Init,
depends on application

•  NAS Parallel Benchmarks
–  4,096 processes
–  Class B data

•  Improvements of up to
10% in total application
run-time (as reported by
the job launcher)

SLURM User Group Meeting '15 32

Application Performance with Non-blocking PMI

0

1

2

3

4

5

6

7

CG EP FT MG

E
xe

cu
ti

on
 T

im
e

(s
ec

on
ds

)

Application

Fence Ifence Allgather Iallgather

[3] Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and
D. K. Panda, CCGrid ‘15

•  Introduction
•  Challenges
•  PMI Ring Extension
•  Non-blocking PMI Extensions
•  Conclusion

SLURM User Group Meeting '15

Overview

33

Conclusion

•  PMIX_Ring moves bulk of the PMI exchange over High-
performance network like InfiniBand

•  MPI_Init and Hello World is 33% faster @ 8K processes

•  PMIX_Iallgather and PMIX_KVS_Ifence allows for overlap of PMI
exchanges with library initialization and application computation

•  MPI_Init can be completed in constant time at any scale using the
proposed non-blocking PMI extensions (288% faster @ 16K)

•  Total execution time of NAS benchmarks reduced by up to 20%

•  Support for PMIX_KVS_Ifence is available since MVAPICH2-2.1
•  SLURM support coming soon!

SLURM User Group Meeting '15 34

Thank you!

SLURM User Group Meeting '15 35

{chakrabs, subramon, perkinjo, panda}@cse.ohio-state.edu
moody20@llnl.gov

http://nowlab.cse.ohio-state.edu

