Supporting SR-IOV and IVSHMEM in MVAPICH2 on Slurm: Challenges and Benefits

Slurm User Group Meeting 15, Sep ’15

Xiaoyi Lu, Jie Zhang, Sourav Chakraborty, Hari Subramoni, Mark Arnold, Jonathan Perkins, Dhabaleswar K. Panda

The Ohio State University

E-mail: {luxi, zhanjie, chakrabs, subramon, arnoldm, perkinjo, panda} @cse.ohio-state.edu
Outline

• HPC Cloud with SR-IOV and InfiniBand

• MVAPICH2-Virt with SR-IOV and IVSHEM
 – Standalone, OpenStack

• MVAPICH2-Virt on Slurm

• Performance Benefits

• Conclusion
Cloud Computing and Virtualization

• Cloud Computing focuses on maximizing the effectiveness of the shared resources
• Virtualization is the key technology for resource sharing in the Cloud
• Widely adopted in industry computing environment
• IDC Forecasts Worldwide Public IT Cloud Services Spending to Reach Nearly $108 Billion by 2017

– Courtesy: http://www.idc.com/getdoc.jsp?containerId=prUS24298013
HPC Cloud - Combining HPC with Cloud

• IDC expects that by 2017, HPC ecosystem revenue will jump to a record $30.2 billion. IDC foresees public clouds, and especially custom public clouds, supporting an increasing proportion of the aggregate HPC workload as these cloud facilities grow more capable and mature
 – Courtesy: http://www.idc.com/getdoc.jsp?containerId=247846

• Combining HPC with Cloud is still facing challenges because of the performance overhead associated virtualization support
 – Lower performance of virtualized I/O devices

• HPC Cloud Examples
 – Amazon EC2 with Enhanced Networking
 • Using Single Root I/O Virtualization (SR-IOV)
 • Higher performance (packets per second), lower latency, and lower jitter.
 • 10 GigE
 – NSF Chameleon Cloud
NSF Chameleon Cloud: A Powerful and Flexible Experimental Instrument

- Large-scale instrument
 - Targeting Big Data, Big Compute, Big Instrument research
 - ~650 nodes (~14,500 cores), 5 PB disk over two sites, 2 sites connected with 100G network
 - Virtualization technology (e.g., SR-IOV, accelerators), systems, networking (InfiniBand), infrastructure-level resource management, etc.

- Reconfigurable instrument
 - Bare metal reconfiguration, operated as single instrument, graduated approach for ease-of-use

- Connected instrument
 - Workload and Trace Archive
 - Partnerships with production clouds: CERN, OSDC, Rackspace, Google, and others
 - Partnerships with users

- Complementary instrument
 - Complementing GENI, Grid’5000, and other testbeds

- Sustainable instrument
 - Industry connections

http://www.chameleoncloud.org/
Single Root I/O Virtualization (SR-IOV)

- Single Root I/O Virtualization (SR-IOV) is providing new opportunities to design HPC cloud with very little low overhead
 - Allows a single physical device, or a Physical Function (PF), to present itself as multiple virtual devices, or Virtual Functions (VFs)
 - Each VF can be dedicated to a single VM through PCI pass-through
 - VFs are designed based on the existing non-virtualized PFs, no need for driver change
 - Work with 10/40 GigE and InfiniBand
Trends of Networking Technologies in TOP500 Systems

Percentage share of InfiniBand is steadily increasing

Interconnect Family – Systems Share

Courtesy:
http://top500.org
http://www.theplatform.net/2015/07/20/ethernet-will-have-to-work-harder-to-win-hpc/
Large-scale InfiniBand Installations

- 259 IB Clusters (51%) in the June 2015 Top500 list
 (http://www.top500.org)
- Installations in the Top 50 (24 systems):

<table>
<thead>
<tr>
<th>System Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>519,640 cores (Stampede) at TACC (8th)</td>
<td>76,032 cores (Tsubame 2.5) at Japan/GSIC (22nd)</td>
</tr>
<tr>
<td>185,344 cores (Pleiades) at NASA/Ames (11th)</td>
<td>194,616 cores (Cascade) at PNNL (25th)</td>
</tr>
<tr>
<td>72,800 cores Cray CS-Storm in US (13th)</td>
<td>76,032 cores (Makman-2) at Saudi Aramco (28th)</td>
</tr>
<tr>
<td>72,800 cores Cray CS-Storm in US (14th)</td>
<td>110,400 cores (Pangea) in France (29th)</td>
</tr>
<tr>
<td>265,440 cores SGI ICE at Tulip Trading Australia (15th)</td>
<td>37,120 cores (Lomonosov-2) at Russia/MSU (31st)</td>
</tr>
<tr>
<td>124,200 cores (Topaz) SGI ICE at ERDC DSRC in US (16th)</td>
<td>57,600 cores (SwiftLucy) in US (33rd)</td>
</tr>
<tr>
<td>72,000 cores (HPC2) in Italy (17th)</td>
<td>50,544 cores (Occigen) at France/GENCI-CINES (36th)</td>
</tr>
<tr>
<td>115,668 cores (Thunder) at AFRL/USA (19th)</td>
<td>76,896 cores (Salomon) SGI ICE in Czech Republic (40th)</td>
</tr>
<tr>
<td>147,456 cores (SuperMUC) in Germany (20th)</td>
<td>73,584 cores (Spirit) at AFRL/USA (42nd)</td>
</tr>
<tr>
<td>86,016 cores (SuperMUC Phase 2) in Germany (21st)</td>
<td>and many more!</td>
</tr>
</tbody>
</table>
Building HPC Cloud with SR-IOV and InfiniBand

- High-Performance Computing (HPC) has adopted advanced interconnects and protocols
 - InfiniBand
 - 10 Gigabit Ethernet/iWARP
 - RDMA over Converged Enhanced Ethernet (RoCE)

- Very Good Performance
 - Low latency (few micro seconds)
 - High Bandwidth (100 Gb/s with EDR InfiniBand)
 - Low CPU overhead (5-10%)

- OpenFabrics software stack with IB, iWARP and RoCE interfaces are driving HPC systems

- Building HPC Cloud with SR-IOV and InfiniBand for delivering optimal performance
Outline

• HPC Cloud with SR-IOV and InfiniBand

• MVAPICH2-Virt with SR-IOV and IVSHMEM
 – Standalone, OpenStack

• MVAPICH2-Virt on Slurm

• Performance Benefits

• Conclusion
MVAPICH2 Software

• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RoCE
 – MVAPICH (MPI-1), Available since 2002
 – MVAPICH2 (MPI-2.2, MPI-3.0 and MPI-3.1), Available since 2004
 – MVAPICH2-X (Advanced MPI + PGAS), Available since 2012
 – Support for GPGPUs (MVAPICH2-GDR), Available since 2014
 – Support for MIC (MVAPICH2-MIC), Available since 2014
 – Support for Virtualization (MVAPICH2-Virt), Available since 2015
 – Support for Energy-Aware MPI communications (MVAPICH2-EA), available since 2015
 – Used by more than 2,450 organizations in 76 countries
 – More than 285,000 downloads from the OSU site directly
 – Empowering many TOP500 clusters (Jun’15 ranking)
 • 8th ranked 519,640-core cluster (Stampede) at TACC
 • 11th ranked 185,344-core cluster (Pleiades) at NASA
 • 22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
 – Available with software stacks of many IB, HSE, and server vendors including Linux Distros (RedHat and SuSE)
 – http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
 – System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 – Stampede at TACC (8th in Jun’15, 462,462 cores, 5.168 Plops)
Support for SR-IOV
 - Inter-node Inter-VM communication

Locality-aware communication through IVSHMEM
 - Inter-VM Shared Memory (IVSHMEM) is a novel feature proposed for inter-VM communication, and offers shared memory backed communication for VMs within a given host
 - Intra-node Inter-VM communication

Building efficient HPC Cloud
Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM

- Redesign MVAPICH2 to make it virtual machine aware
 - SR-IOV shows near to native performance for inter-node point to point communication
 - IVSHMEM offers zero-copy access to data on shared memory of co-resident VMs
 - Locality Detector: maintains the locality information of co-resident virtual machines
 - Communication Coordinator: selects the communication channel (SR-IOV, IVSHMEM) adaptively

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack

- OpenStack is one of the most popular open-source solutions to build clouds and manage virtual machines
- Deployment with OpenStack
 - Supporting SR-IOV configuration
 - Supporting IVSHMEM configuration
 - Virtual Machine aware design of MVAPICH2 with SR-IOV
- An efficient approach to build HPC Clouds with MVAPICH2-Virt and OpenStack

Outline

• HPC Cloud with SR-IOV and InfiniBand
• MVAPICH2-Virt with SR-IOV and IVSHMEM
 – Standalone, OpenStack
• MVAPICH2-Virt on Slurm
• Performance Benefits
• Conclusion
Can HPC Clouds be built with MVAPICH2-Virt on Slurm?

• Slurm is one of the most popular open-source solutions to manage huge amounts of machines in HPC clusters.

• How to build a Slurm-based HPC Cloud with near native performance for MPI applications over SR-IOV enabled InfiniBand HPC clusters?

• What are the requirements on Slurm to support SR-IOV and IVSHMEM provided in HPC Clouds?

• How much performance benefit can be achieved on MPI primitive operations and applications in “MVAPICH2-Virt on Slurm”-based HPC clouds?
Typical Usage Scenarios

- **Exclusive Allocation Sequential Job**
 - Compute Nodes
 - VM
 - MPI

- **Exclusive Allocation Concurrent Jobs**
 - Compute Nodes
 - VM
 - MPI

- **Shared-host Allocations Concurrent Jobs**
 - VF1
 - VF2
 - VF3
 - VF4
 - VM
 - MPI
 - IVSHMEM-1
 - IVSHMEM-2

SLUG '15
Needs for Supporting SR-IOV and IVSHMEM in Slurm

• Requirement of managing and isolating virtualized resources of SR-IOV and IVSHMEM

• Such kind of management and isolation is hard to be achieved by MPI library alone, but much easier with Slurm

• Efficient running MPI applications on HPC Clouds needs Slurm to support managing SR-IOV and IVSHMEM
 – Can critical HPC resources be efficiently shared among users by extending SLURM with support for SR-IOV and IVSHMEM based virtualization?
 – Can SR-IOV and IVSHMEM enabled SLURM and MPI library provide bare-metal performance for end applications on HPC Clouds?
Workflow of Running MPI Jobs with MVAPICH2-Virt on Slurm

1. SR-IOV virtual function
2. IVSHMEM device
3. Network setting
4. Image management
5. Launching VMs and check availability
6. Mount global storage, etc.
Benefits of Plugin-based Designs for Slurm

• Coordination
 – With global information, Slurm plugin can manage SR-IOV and IVSHMEM resources easily for concurrent jobs and multiple users

• Performance
 – Faster coordination, SR-IOV and IVSHMEM aware resource scheduling, etc.

• Scalability
 – Taking advantage of the scalable architecture of Slurm

• Fault Tolerance

• Permission

• Security
Outline

• HPC Cloud with SR-IOV and InfiniBand
• MVAPICH2-Virt with SR-IOV and IVSHMEM
 – Standalone, OpenStack
• MVAPICH2-Virt on Slurm
• Performance Benefits
• Conclusion
Experimental Setup

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Nowlab Cloud</th>
<th>Amazon EC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>4 Core/VM</td>
<td>8 Core/VM</td>
</tr>
<tr>
<td>Platform</td>
<td>RHEL 6.5 Qemu+KVM HVM Slurm 14.11.8</td>
<td>Amazon Linux (EL6) Xen HVM C3.xlarge [1] Instance</td>
</tr>
<tr>
<td>CPU</td>
<td>SandyBridge Intel(R) Xeon E5-2670 (2.6GHz)</td>
<td>IvyBridge Intel(R) Xeon E5-2680v2 (2.8GHz)</td>
</tr>
<tr>
<td>RAM</td>
<td>6 GB</td>
<td>12 GB</td>
</tr>
</tbody>
</table>

[1] Amazon EC2 C3 instances: the latest generation of compute-optimized instances, providing customers with the highest performing processors, good for HPC workloads

[2] Nowlab Cloud is using InfiniBand FDR (56Gbps), while Amazon EC2 C3 instances are using 10 GigE. Both have SR-IOV support.
Experiments Carried Out

• Point-to-point
 – Two-sided and One-sided
 – Latency and Bandwidth
 – Intra-node and Inter-node [1]

• Applications
 – NAS and Graph500

[1] Amazon EC2 does not support users to explicitly allocate VMs in one physical node so far. We allocate multiple VMs in one logical group and compare the point-to-point performance for each pair of VMs. We see the VMs who have the lowest latency as located within one physical node (Intra-node), otherwise Inter-node.
Point-to-Point Performance – Latency & Bandwidth (Intra-node)

- EC2 C3.2xlarge instances
- Compared to SR-IOV-Def, up to 84% and 158% performance improvement on Lat & BW
- Compared to Native, 3%-7% overhead for Lat, 3%-8% overhead for BW
- Compared to EC2, up to 160X and 28X performance speedup on Lat & BW
Point-to-Point Performance – Latency & Bandwidth (Inter-node)

- EC2 C3.2xlarge instances
- Similar performance with SR-IOV-Def
- Compared to Native, 2%-8% overhead on Lat & BW for 8KB+ messages
- Compared to EC2, up to 30X and 16X performance speedup on Lat & BW
One-Sided Put Performance – Latency & Bandwidth (Intra-node)

- EC2 C3.2xlarge instances
- Compared to SR-IOV-Def, up to 63% and 42% performance improvement on Lat & BW
- Compared to Native, 3%-12% overhead for Lat, and 3%-11% overhead for BW
- Compared to EC2, up to 134X and 33X performance speedup on Lat & BW
One-Sided Put Performance – Latency & Bandwidth (Inter-node)

- EC2 C3.2xlarge instances
- Similar performance with SR-IOV-Def
- Compared to Native, 2%-8% overhead on Lat & BW for 8KB+ messages
- Compared to EC2, up to 45X and 32X performance speedup on Lat & BW
Application Performance (4 VM * 8 Core/VM)

- EC2 C3.2xlarge instances
- Compared to Native, 2%-8% overhead for NAS, around 6% overhead for Graph500
- Compared to EC2, up to 4.4X (FT) speedup for NAS, up to 12X (20,10) speedup for Graph500
Outline

• HPC Cloud with SR-IOV and InfiniBand
• MVAPICH2 with SR-IOV
 – Standalone, OpenStack
• MVAPICH2-Virt on Slurm
• Performance Benefits
• Conclusion
Conclusion

- MVAPICH2-Virt with SR-IOV and IVSHMEM is an efficient approach to build HPC Clouds
 - Standalone
 - OpenStack
- Building HPC Clouds with MVAPICH2-Virt on Slurm
- Performance numbers are promising
- Much better performance than Amazon EC2
- Near native performance at application level
- **MVAPICH2-Virt 2.1** is released!
 - SR-IOV, IVSHMEM, OpenStack
 - http://mvapich.cse.ohio-state.edu/
- Future releases for supporting running MPI jobs in VMs/Containers with Slurm
Thank You!

{luxi, zhanjie, chakrabs, subramon, arnoldm, perkinjo, panda}
@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/