Support for Intel Knights Landing (KNL)

Morris Jette and Tim Wickberg SchedMD LLC

Slurm User Group Meeting 2016

Copyright 2016 SchedMD LLC http://www.schedmd.com

Outline

- KNL Overview
- KNL Scheduling Issues
- Node Features plugins
 - Cray system support
 - Generic clusters support

Intel Knights Landing (KNL) Overview

- Up to 72 Airmont (Atom) cores with four threads per core
 - Arranged in 2-D mesh interconnect
- Up to 384 GB of "far" DDR4 RAM
- 8 16 GB of stacked "near" 3D MCDRAM (Multi-Channel DRAM), a version of High Bandwidth Memory (HBM)
- Can be used as co-processor or self-boot (stand-alone processor)
 - Co-processor mode previously supported through gres/mic for KNC

KNL NUMA Modes

- The 2 dimensional mesh interconnect can be configured at boot time into one of five different modes
 - All-to-all (a2a): Uniform mesh interconnect
 - Hemisphere (hemi): Two virtual address spaces (one NUMA domain)
 - Quadrant (quad): Four virtual address spaces (one NUMA domain)
 - Sub-NUMA-2 (snc2): Two distinct NUMA domains
 - Sub-NUMA-4 (snc4): Four distinct NUMA domains

KNL SNC4 NUMA Mode

MCDRAM		MCDRAM			
Tile Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
Tile Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
Tile Core	Core	^{Tile} Core	Core	^{Tile} Core	Core

		MCDRAM		MCDRAM	
^{Tile} Core	Core	^{Tile} Core	Core	Tile Core	Core
^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core

Tile Core	Core	Tile Core	Core	Tile Core	Core
Tile Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
MCDRAM		MCDRAM			

^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
^{Tile} Core	Core	^{Tile} Core	Core	^{Tile} Core	Core
		MCDRAM		MCDRAM	

Copyright 2016 SchedMD LLC http://www.schedmd.com

KNL Memory Modes

- The MCDRAM can be configured as cache, part of physical memory, or part cache + part memory
- The portion of MCDRAM configured as part of physical memory is known as High Bandwidth Memory (HBM)
- Reboot required to change memory mode

KNL Memory Modes

<u>Cache Mode</u> MCDRAM entirely cache

<u>Flat Mode</u>

MCDRAM entirely memory

Hybrid Mode

Some of MCDRAM is cache, Some of MCDRAM is memory

MCDRAM	DDR

High Bandwidth Memory (HBM)

- Amount of available HBM can vary with MCDRAM mode
- HBM availability is managed as a Slurm Generic Resource (GRES) and can change at node boot time
- NOTE: Currently no mechanism in Slurm to ensure that a job does not consume more HBM than requested. This will be addressed in a future release (tentatively version 17.02)

Issues for Slurm

- Large core/thread count (72 cores, 288 threads)
- Changes to MCDRAM mode and HBM size at boot time
- Changes to NUMA mode and NUMA count at boot time
- Overhead of booting nodes before use
 - 5-7 minutes on a standalone system
 - ... longer on a Cray KNL node

Node Features

- Used to establish node characteristics for scheduling purposes
- Split into two fields:
 - Available features: NUMA and MCDRAM modes which can be made available with a node reboot
 - Active features: Current NUMA and MCDRAM modes, possibly modified when computed node is booted

NodeName=nid00001 ActiveFeatures=quad,flat AvailableFeatures=a2a,hemi,quad,snc2,snc4,cache,split,flat

> Copyright 2016 SchedMD LLC http://www.schedmd.com

Node Features: Scheduling

- User specifies required mode on job command line
 - Only AND operation supported, no OR, XOR, counts, etc.
- Job will be allocated nodes already in desired mode if possible
- Nodes will be rebooted only if needed
 - Boot time can be tens of minutes, avoid if possible

sbatch -C a2a,flat -n 72 -N1 --hint=nomultithread my.bash

Node Features: Scheduling

- The job is billed for all resources from the time of allocation
 - Boot time is charged against job in fairshare and sacct
 - Looking at splitting the CF and R times apart in future
 - Not counted against the TimeLimit for the job
- Nodes can only be rebooted it has no active jobs
 - Could prove problematic if resource allocations not at node level (e.g. different cores allocated to different jobs)

Node Features Plugin

- Provides mechanism to get and modify a node's MCDRAM and NUMA configuration plus boot the node
- Configuration file with administrative options
- Two plugins available
 - knl_cray for Cray systems
 - knl_generic for generic clusters

knl_cray Plugin

- Available today (version 16.05.0+)
- Cray's *capmc* and *cnselect* commands used to:
 - Read current MCDRAM and NUMA mode
 - Change MCDRAM and NUMA mode
 - Reboot nodes
 - Test node status
- All operations performed on head node

knl_cray Plugin

- Makes use of Slurm infrastructure to suspend idle nodes and return them to service as needed
 - Capmc_suspend and capmc_resume programs in the contribs directory should be installed and configured in slurm.conf as SuspendProgram and ResumeProgram
 - Configure SuspendTime to large value if suspending of idle nodes is not desired

knl_cray Plugin

- If node mode change or boot fails, the *capmc* command currently does not identify the failing node
 - The job allocated those nodes will be requeued and held
 - Nodes previously allocated to the job can be used in subsequent resource allocations until the bad node(s) can be identified

knl_generic Plugin

- Available October 2016 (version 16.05.6)
 - Code written and being tested
- Intel's syscfg command used to
 - Read current MCDRAM and NUMA mode
 - Change MCDRAM and NUMA mode
- Linux reboot command used to
 - Reboot nodes
- All operations performed directly on compute nodes

knl_generic Plugin

- If node mode change or boot fails
 - The bad node(s) will be set DOWN
 - The job allocated those nodes will be requeued and scheduled when possible

knl.conf Configuration File

- Who is allowed to reboot nodes
- Available MCDRAM and NUMA modes
 - Could be subset of those supported by the processor
- Default MCDRAM and NUMA modes
- Path to programs used to get/set mode information
- Timeouts for called programs
- Different parameters for Cray and generic systems

- Slurm currently only supports homogeneous NUMA
 - 68-core KNL in SNC4 or Quadrant mode not supported
 - Results in unbalanced NUMA domains of [16, 16, 18, 18] cores
 - Scheduler requires all domains to match
- Recommend CoreSpecCount to minimize OS jitter
 - Linux kernel can keep 2-4 cores 100% busy under load

More Information Online

https://slurm.schedmd.com/intel_knl.html

https://slurm.schedmd.com/knl.conf.html

Copyright 2016 SchedMD LLC http://www.schedmd.com

Questions?

Copyright 2016 SchedMD LLC http://www.schedmd.com