
NERSC Site Report
One year of Slurm

Douglas Jacobsen
NERSC

SLURM User Group 2016

NERSC Vital Statistics
● 860 active projects
● 7,750 active users
● 700+ codes both established and in-development
● migrated production capability systems to Slurm 09/2015 - 01/2016

NERSC is part of the Lawrence Berkeley
National Laboratory

● Recently moved from Oakland, CA
to Berkeley, CA

NERSC operates multiple
supercomputers for the U.S.
Department of Energy

Computer time is allocated by DOE for
open science research projects funded
by DOE.

NERSC Vital Statistics
● edison XC30, 5586 ivybridge nodes

○ Moved edison from Oakland, CA to Berkeley, CA in Dec 2015
○ 24 cores per node, 134,064 cores total
○ 64 GB per node, 2.6GB/core, 350TB total
○ Primarily used for large capability jobs
○ Small - midrange as well

NERSC Vital Statistics
● cori phase 1 XC40, 1,628 haswell nodes

○ DataWarp BurstBuffer
○ realtime jobs for experimental facilities
○ massive quantities of serial jobs
○ regular HPC workload too
○ shifter for Linux Containers

cori XC40
2,000 haswell nodes 64,000 cores
9,308 knl nodes 632,944 cores

keep all phase 1 workload
add massive KNL development workload
greatly expand HPC workload

SLURM on Cray Systems
"Natively" running SLURM replaces some of the
ALPS resource manager functionalities on Cray
Systems

Why native?

1. Enables direct support for serial jobs
2. Simplifies operation by easing

prolog/epilog access to compute nodes
3. Simplifies user experience

a. No shared batch-script nodes
b. Similar to other cluster systems

4. Enables new features and functionality
on existing systems

5. Creates a "platform for innovation"

slurmctld
(primary)

repurposed
"net" node

computecompute

slurmctld
(backup)

slurmdbd
mysql

ldap

network
gateways

esloginesloginelogin

Internal SLURM
Installation

slurm.conf ControlAddr
unset to allow slurmctld
traffic to use ipogif0 owing
to lookup of nid0xxxx
hostname

External SLURM
Installation (built with
--really-not-a-cray)

slurm.conf ControlAddr
overridden to force
slurmctld traffic over
ethernet interface

slurmd slurmd

Scaling Up

Sun Jan 24 04:51:29 2016: [unset]:_pmi_alps_get_apid:alps response not OKAY
Sun Jan 24 04:51:29 2016: [unset]:_pmi_init:_pmi_alps_init returned -1
[Sun Jan 24 04:51:30 2016] [c3-0c2s9n3] Fatal error in MPI_Init: Other MPI
error, error stack:
MPIR_Init_thread(547):
MPID_Init(203).......: channel initialization failed
MPID_Init(584).......: PMI2 init failed: 1
<repeat ad nauseum for every rank>

Challenge: Small and mid-scale jobs work great!
When MPI ranks exceed ~50,000 sometimes users get:

Workaround: Increase PMI timeout from 60s to something
bigger (app env): PMI_MMAP_SYNC_WAIT_TIME=300

lustre

compute

compute

compute

compute

...

Problem: srun directly execs the application from the hosting filesystem
location. FS cannot deliver the application at scale. aprun would copy the
executable to in-memory filesystem by default.

Solution: 15.08 srun feature merging sbcast and srun
 srun --bcast=/tmp/a.out ./mpi/a.out
slurm 16.05 adds --compress option to deliver
executable in similar time as aprun

Other scaling topics:
● srun ports for stdout/err
● rsip port exhaustion
● slurm.conf TreeWidth
● Backfill tuning

Scheduling

Source: Brian Austin, NERSC

"NERSC users run applications
at every scale to conduct their
research."

Scheduling

cori

● "shared" partition
○ Up to 32 jobs per node

○ HINT: set --gres=craynetwork:0 in

job_submit.lua for shared jobs

○ allow users to submit 10,000 jobs with up

to 1,000 concurrently running

● "realtime" partition
○ Jobs must start within 2 minutes
○ Per-project limits implemented using QOS

○ Top priority jobs + exclusive access to

small number of nodes (92% utilized)

● burstbuffer QOS gives constant priority
boost to burst buffer jobs

edison

● big job metric - need to always be running
at least one "large" job (>682 nodes)

○ Give priority boost + discount

cori+edison

● debug partition
○ delivers debug-exclusive nodes

○ more exclusive nodes during business

hours

● regular partition
○ Highly utilized workhorse

● low and premium QOS
○ accessible in most partitions

● scavenger QOS
○ Once a user account balance drops below

zero, all jobs automatically put into

scavenger. Eligible for all partitions

except realtime

Scheduling - How Debug Works

nid00008 nid05586

debug

 regular

nid00008 nid05586

debug

regular

Nights and Weekends

Business Hours

Debug jobs:
● are smaller than "regular" jobs
● are shorter than "regular" jobs
● have access to all nodes in the system
● have advantageous priority

Day/Night:
● cron-run script manipulates regular

partition configuration (scontrol update
partition=regular…)

● during night mode adds a reservation to
prevent long running jobs from starting
on contended nodesthese concepts are extended for cori's

realtime and shared partitions

Scheduling - Backfill
now

time

j
o
b
s

and
 so

 o
n...

● NERSC typically has hundreds of
running jobs (thousands on cori)

● Queue frequently 10x larger (2,000 -
10,000 eligible jobs)

● Much parameter optimization required
to get things "working"

○ bf_interval
○ bf_max_job_partition
○ bf_max_job_user
○ …

● We still weren't getting our target
utilization (>95%)

● Still were having long waits with many
backfill targets in the queue

New Backfill Algorithm!
bf_min_prio_reserve

1. choose particular priority value
as threshold

2. Everything above threshold gets
resource reservations

3. Everything below is evaluated
with simple "start now" check
(NEW for SLURM)

Utilization jumped on average more
than 7% per day
Every backfill opportunity is realizedJob Prioritization

1. QOS
2. Aging (scaled to 1 point per minute)
3. Fairshare (up to 1440 points)

Priorities

To maximize utilization, backfill resource reservations need to be maintained
and re-evaluated in the same order every time. This implies that a monotonically
increasing evolution of priorities is ideal.

Strategy: Normalize priority values into an understandable unit, this will help
scale priority contributions within the multi-priority plugin

NERSC normalizes priority to time, where job age is changes job priority over
time. We use fairshare as a very small contribution for local sorting of job
priorities.

Priorities

bf_min_prio_resv69120

1. Choose scale of job priority variability and "units"
of priority

a. PriorityMaxAge: 128-00:00:00
b. PriorityWeightAge: 184320

i. 128 days * 1440 minutes/day
ii. MaxAge / Weight = 1 priority pt/minute

2. Choose QOS (or PartitionJobFactor) Priorities to
"position" jobs on the scale

a. PriorityWeightQOS = PriorityWeightAge +
bf_min_prio_resv value

b. Add "scalingfactor" qos with
priority=PriorityWeightQOS to ensure all
priorities are on constant scale (NO qos with
higher priority than scalingfactor)

3. Can add other priority factors very carefully, e.g.,
FairShare, but perhaps at < 5% of bf_min_prio_resv

a. PriorityWeightFairshare=1440 (one "day" of
priority)

"premium"

"debug"

"large_normal"

"normal"

"low"

"scavenger"

"realtime"

Shifter - Linux Containers for HPC
● Docker-like functionality enabled on HPC

systems
○ Direct import of any docker image

● End-to-end Slurm integration
○ Integrated image selection and

configuration
○ Integrated job start

● Security model compatible with
traditional HPC needs

○ User is user

○ No privileges accessible to container

processes

● Fully allows resource manager to manage
resources

○ Does not manipulate cgroups

● Transparent support for site-optimized
MPI with generic container images

#!/bin/bash
#SBATCH --image=dmjacobsen/mpitest
#SBATCH --volume=/scratch/dmj/i:/input
#SBATCH --volume=/scratch/dmj/o:/output
#SBATCH -N 250

srun shifter /app

Exciting slurm topics I'm not covering today
user training and tutorials

accounting/integrating slurmdbd with NERSC databases

user experience and documentation

details of realtime implementation

burstbuffer / DataWarp integration

NERSC slurm plugins: vtune, completion

ccm

monitoring

reservations

knl

job_submit.lua

blowing up slurm
without getting burned

draining dvs service
nodes with prolog

slurm deployment strategies

Conclusions and Future Directions

● We have consistently delivered
highly usable systems with Slurm
since it was put on the systems

● NERSC has filed 142 issues to date -
typical experience is that bugs are
repaired same-or-next day

● Slurm as-a-resource manager on Cray
is a new technology that has rough
edges with great opportunity!

● Integrating Cori Phase 2 (+9300
KNL)

○ 11,300 node system

○ New processor requiring new NUMA

binding capabilities, node reboot

capabilities,

○ Expect large increase in job flux with

major increase in scale combined with

new architecture

● Increasing visibility into slurm
operations

● Working to improve priority
management to optimize
utilization and fairness

Acknowledgements

NERSC

● Tina Declerck
● David Paul
● Ian Nascimento
● Stephen Leak

Cray

● Brian Gilmer

SchedMD

● Moe Jette
● Danny Auble
● Tim Wickberg
● Brian Christiansen

NERSC is Hiring!

We want exceptional individuals with

● Strong systems programming skills
● Deep understanding of systems architecture
● Interest in new and innovative technology

You will

● Work on some of largest systems anywhere in the
world

● Make an impact on how thousands of researchers
use HPC systems

