

Optimizing HPC resource allocation through monitoring

Alexandre Beche <alexandre.beche@epfl.ch>

Outlines

- I. Context
- 2. Job monitoring
- 3. Beyond Slurm monitoring

Context

Blue Brain Project

Host Institution

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Director

Henry Markram

Co-Directors

Sean Hill, Felix Schürmann

Team today

~85 scientists, engineers & staff

Timeline

2005 founded at EPFL 2011/2012 ETH Board funding

2013-2016 Swiss National Research

Infrastructure

Main International Collaborations

Switzerland (CSCS, CERN)

Israel (HUJI)

USA (Yale, ANL, Allen Brain)

Spain (UPM)

Saudi Arabia (KAUST)

Europe (HBP)

Data-Driven Modeling & Simulation!

Wellfornal anatomy Nelfornal anatomy Nelfornal anatomy Nelfornal anatomy

- 13 excitatory & 42 inhibitory m-types
- 31,000 neurons
- 111.700 neurons/mm3
- Excitatory to inhibitory neuron ratio of 86:14 %
- 346 m of axon
- 211 m of dendrites
- Maximum branch order of m-types:

17
Dendrites

- 0.63 synapses/mm³
- Extrinsic to intrinsic synapse ratio of 75:25 %
- 3025 possible synaptic pathways
- 2258 viable synaptic pathways
- 664 excitatory pathways
 - 1594 inhibitory pathways
 - 600 intra-laminar pathways
 - 1658 inter-laminar pathways
 - Mean synapses/connection

Neuronal physiology

- types
- 13 HH type ion channel models
- bAP & EPSP attenuation for 207 morpho-electrical types
- · Ion channel density distribution profiles:

- 6 synapse types
- 207 synaptomes
- Space clamp corrected synaptic conductances for 607 pathways
- The per synapse conductance of 1.5 nS for connections between L5TTPCs is the highest in the microrcircuit
- · Mean conductance per synapse: 0.85 nS for excitatory & 0.66 nS for inhibitory synapses
- Total conductance in a single neuron is 971 nS

Markram et al, Cell 2015

https://bbp.epfl.ch/nmc-portal

- 80 authors
- Joint effort between computer and neuroscientists
- Reproducible work
- **Extensible**

HPC Today's Infrastructure

IaaS

4 nodes

36 nodes

Viz & Analytics

CEPH

Viz & Analytics

GVA

14 nodes

GPFS

Elastic Compute

- Visualization and analysis
- Web services
- SW development
- Continuous Integration
- Continuous Deployment

Production HPC

- Model development
- Reconstruction
- Simulation
- SW development

4 Compute Racks
4096 Compute Nodes
5D CN torus
0.8 PF/s peak
64TB DRAM
4.2 PB GPFS storage

CEPH

IaaS

NetApp

12 nodes

Systems Research

- Memory extension
- · Application coupling
- Interactive supercomputing
- Reproducibility

64 IONodes 3D torus 128TB Flash Linux

IBM BlueGene/Q

IBM BlueGene Active Storage

HPC Resources usage

Facts:

- 70 Users
- 35 Projects
- 3 Clusters

	Daily core hours available	Daily Job submitted	Active user*
BlueGene	1572864	103	20
Lugano cluster	13824	632	53
Geneva cluster	4512	259	20

^{*} User who submitted at least one job over the last month

HPC Resources usage

Facts:

- 70 Users
- 35 Projects
- 3 Clusters

	Daily core hours available	Daily Job submitted	Active user*
BlueGene	1572864	103	20
Lugano cluster	13824	632	53
Geneva cluster	4512	259	20

^{*} User who submitted at least one job over the last month

Observations:

- Clusters are scheduling 10x more jobs than bluegene
- Cluster nodes are shared (--exclusive is limited), not bluegene

Emphasis of the presentation will be put on HPC clusters

Job monitoring

Problem description

Interactive HPC Clusters usage over time

Extracted from **sreport**

Problem description

Interactive HPC Clusters usage over time

Symptoms:

User can't get an allocation

Cause:

Cluster is fully allocated

Solution:

- 1) Buy a bigger one ©
- See if resources are optimally used

Slurm accounting DB

Knowledge of all jobs / step executed

- Average waiting time in the queue
- Submission rate by user / project

"sacct" data are indexed into ElasticSearch

- Near real-time (every 10 minutes)
- Analytics, web report generation

Limitations:

Not natively aware of resources used by the job

Blue Brain Project BBP Monitoring infrastructure

Scalable and extensible framework

- Based on open source technologies
- Enable data collection and analysis

Brain Project BBP Monitoring infrastructure

Native host instrumentation

- 10 seconds resolution
- 250 metrics per node

Scalable and extensible framework

- Based on open source technologies
- Enable data collection and analysis

Limitation: System metrics does not have any knowledge about workload

Dashboard 1/3

Dashboard 2/3

Dashboard 3/3

Non-optimal use case

Allocation details:

 Single nodes, all cores, batch partition

Job details:

CPU bound

Single-thread used

Un-used allocation

Benefits

Developers

- Analyze code from a system perspective
 - Non-intrusive monitoring / negligible (perf) overhead
- Detect code inefficiency / limiting resource
 - Non optimal parallelization

Benefits

Developers

- Analyze code from a system perspective
 - Non-intrusive monitoring / negligible (perf) overhead
- Detect code inefficiency / limiting resource
 - Non optimal parallelization

System admins

- Analyze system metrics with workload context
- Detect non-optimal allocation
 - Allocation bigger than execution time

Holistic view enabling cross team (competencies) debugging

Ongoing work / limitation

Ongoing work

- Creating KPI out of the available metrics
 - Efficiency of a job (cpu seconds used /reserved)

Ongoing work / limitation

Ongoing work

- Creating KPI out of the available metrics
 - Efficiency of a job (cpu seconds used /reserved)

Limitations

- Mainly system metrics so far
 - Only memory are collected at cgroup level
- Missing infiniband metrics
- Job internals are hidden

Beyond Slurm monitoring

Job workload context

Focus has been put on monitoring the job in the infrastructure

No hint is given to the job internals

Job entering in a given phase

Job workload context

Focus has been put on monitoring the job in the infrastructure

No hint is given to the job internals

Job entering in a given phase

Providing a library to enhance job context

- Workload manager agnostic
- Not a profiling tool
- Lightweight way of sharing information from the job
- Allows to ship user-defined metadata

BBP_instrumentations


```
def count_element(self):
    lines = self._data.count()
```


BBP_instrumentations

Summary

Detection of non-optimal usage

- Un-used allocation
- Developers now have tools to understand job behaviors

Internal job monitoring

 Allows understanding which resources are consumed by section of job through user-defined metadata

Correlation of scattered information enable powerful analysis

Acknowledgements

BBP core services & HPC teams