Optimizing HPC resource allocation through monitoring

Alexandre Beche <alexandre.beche@epfl.ch>
1. Context
2. Job monitoring
3. Beyond Slurm monitoring
Context
Blue Brain Project

Host Institution
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Director
Henry Markram

Co-Directors
Sean Hill, Felix Schürmann

Team today
~85 scientists, engineers & staff

Timeline
2005 founded at EPFL
2011/2012 ETH Board funding
2013-2016 Swiss National Research Infrastructure

Main International Collaborations
Switzerland (CSCS, CERN)
Israel (HUJI)
USA (Yale, ANL, Allen Brain)
Spain (UPM)
Saudi Arabia (KAUST)
Europe (HBP)
Neuronal anatomy

- \sim 2 mm thick
- 55 morphological types
 - 13 excitatory & 42 inhibitory m-types
 - 31,000 neurons
 - 111,700 neurons/mm3
 - Excitatory to inhibitory neuron ratio of 86:14%
- 346 m of axon
- 211 m of dendrites
- Maximum branch order of m-types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Axon</th>
<th>Dendrites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitatory</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Inhibitory</td>
<td>50</td>
<td>17</td>
</tr>
</tbody>
</table>

Synaptic anatomy

- 0.63 synapses/mm3
- Extrinsic to intrinsic synapse ratio of 75:25%
- 3025 possible synaptic pathways
- 2258 viable synaptic pathways
- 664 excitatory pathways
- 1594 inhibitory pathways
- 600 intra-laminar pathways
- 1658 inter-laminar pathways
- Mean synapses/connection: 4.3 Exc, 8.5 Inh

Neuronal physiology

- 11 electrical types
- 207 morpho-electrical types
- 13 HH type ion channel models
- bAP & EPSP attenuation for 207 morpho-electrical types
- Ion channel density distribution profiles:

<table>
<thead>
<tr>
<th>Type</th>
<th>Axon</th>
<th>Soma</th>
<th>Dendrites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Synaptic physiology

- 6 synapse types
- 207 synaptomes
- Space clamp corrected synaptic conductances for 607 pathways
 - The per synapse conductance of 1.5 nS for connections between L5TTPCs is the highest in the microcircuit
 - Mean conductance per synapse: 0.85 nS for excitatory & 0.66 nS for inhibitory synapses
 - Total conductance in a single neuron is 971 nS

- 80 authors
- Joint effort between computer and neuro-scientists
- Reproducible work
- Extensible

Markram et al, Cell 2015

https://bbp.epfl.ch/nmc-portal
HPC Today’s Infrastructure

Elastic Compute
- Visualization and analysis
- Web services
- SW development
- Continuous Integration
- Continuous Deployment

Production HPC
- Model development
- Reconstruction
- Simulation
- SW development

Systems Research
- Memory extension
- Application coupling
- Interactive supercomputing
- Reproducibility

IBM BlueGene/Q
- 4 Compute Racks
- 4096 Compute Nodes
- 5D CN torus
- 0.8 PF/s peak
- 64TB Flash
- 4.2 PB GPFS storage

IBM BlueGene Active Storage
- 64 IONodes
- 3D torus
- 128TB Flash
- Linux

GVA

IaaS
- 4 nodes
- Viz & Analytics
- 36 nodes

CEPH

NetApp

CEPH

GPFS

Viz & Analytics
- 12 nodes
- 14 nodes

Viz & Analytics

IBM BlueGene Active Storage
HPC Resources usage

Facts:

- 70 Users
- 35 Projects
- 3 Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Daily core hours available</th>
<th>Daily Job submitted</th>
<th>Active user*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueGene</td>
<td>1572864</td>
<td>103</td>
<td>20</td>
</tr>
<tr>
<td>Lugano cluster</td>
<td>13824</td>
<td>632</td>
<td>53</td>
</tr>
<tr>
<td>Geneva cluster</td>
<td>4512</td>
<td>259</td>
<td>20</td>
</tr>
</tbody>
</table>

* User who submitted at least one job over the last month
Facts:

<table>
<thead>
<tr>
<th></th>
<th>Daily core hours available</th>
<th>Daily Job submitted</th>
<th>Active user*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueGene</td>
<td>1572864</td>
<td>103</td>
<td>20</td>
</tr>
<tr>
<td>Lugano cluster</td>
<td>13824</td>
<td>632</td>
<td>53</td>
</tr>
<tr>
<td>Geneva cluster</td>
<td>4512</td>
<td>259</td>
<td>20</td>
</tr>
</tbody>
</table>

* User who submitted at least one job over the last month

Observations:

- Clusters are scheduling 10x more jobs than bluegene
- Cluster nodes are shared (--exclusive is limited), not bluegene

Emphasis of the presentation will be put on HPC clusters
Job monitoring
Problem description

Interactive HPC Clusters usage over time

Extracted from sreport
Problem description

Interactive HPC Clusters usage over time

Symptoms:
User can’t get an allocation

Cause:
Cluster is fully allocated

Solution:
1) **Buy a bigger one 😊**
2) See if resources are optimally used
Slurm accounting DB

Knowledge of all jobs / step executed
• Average waiting time in the queue
• Submission rate by user / project

“sacct” data are indexed into ElasticSearch
• Near real-time (every 10 minutes)
• Analytics, web report generation

Limitations:
• Not natively aware of resources used by the job
BBP Monitoring infrastructure

Scalable and extensible framework
- Based on open source technologies
- Enable data collection and analysis
BBP Monitoring infrastructure

Scalable and extensible framework
- Based on open source technologies
- Enable data collection and analysis

Native host instrumentation
- 10 seconds resolution
- 250 metrics per node

Limitation: System metrics does not have any knowledge about workload
Non-optimal use case

Allocation details:
- Single nodes, all cores, batch partition

Job details:
- CPU bound

Job started
Job finished

Single-thread used
Un-used allocation
Benefits

Developers

• Analyze code from a system perspective
 – Non-intrusive monitoring / negligible (perf) overhead
• Detect code inefficiency / limiting resource
 – Non optimal parallelization
Benefits

Developers

• Analyze code from a system perspective
 – Non-intrusive monitoring / negligible (perf) overhead
• Detect code inefficiency / limiting resource
 – Non optimal parallelization

System admins

• Analyze system metrics with workload context
• Detect non-optimal allocation
 – Allocation bigger than execution time

Holistic view enabling cross team (competencies) debugging
Ongoing work

• Creating KPI out of the available metrics
 – Efficiency of a job (cpu seconds used /reserved)
Ongoing work / limitation

Ongoing work

• Creating KPI out of the available metrics
 – Efficiency of a job (cpu seconds used /reserved)

Limitations

• Mainly system metrics so far
 – Only memory are collected at cgroup level
• Missing infiniband metrics
• Job internals are hidden
Beyond Slurm monitoring
Focus has been put on monitoring the job in the infrastructure

No hint is given to the job internals

• Job entering in a given phase
Job workload context

Focus has been put on monitoring the job in the infrastructure

No hint is given to the job internals

- Job entering in a given phase

Providing a library to enhance job context

- Workload manager agnostic
- Not a profiling tool
- Lightweight way of sharing information from the job
- Allows to ship user-defined metadata
def count_element(self):
 lines = self._data.count()
@log_function_events
def count_element(self):
 lines = self.data.count()
Summary

Detection of non-optimal usage
• Un-used allocation
• Developers now have tools to understand job behaviors

Internal job monitoring
• Allows understanding which resources are consumed by section of job through user-defined metadata

Correlation of scattered information enable powerful analysis
BBP core services & HPC teams