Real-time monitoring Slurm jobs with InfluxDB
September 2016

Carlos Fenoy Garcia

ROCthE D

Operations

Agenda

Problem description

Current Slurm profiling

Our solution

Conclusions

Problem description

« Monitoring of jobs is becoming more difficult with new systems with higher
amount of resources as jobs tend to share compute nodes.

« “Standard” monitoring tools hide the individual job usage in the compute
host resource monitoring

CPU last custom Memory last custom
100 300 G+
80
- 200 G
= 60 v
(W] +
t 7}
v
a b 100 G

20

0
0+ ; . ;
19: 40 1 20: 00 19: 40 19: 50 20: 00

9:50
B User Now: 96.7% Min: 0.0% Avg: 83.7% Max: 97.8% B Use Now: 156.0G ~ Min: 69.1G Avg: 131.3G Max: 156.3G
O Nice Now: 0.0% Min: 0.0% Avg: 0.0% Max: 0.0% B Share Now: 0.0 Min: 0.0 Avg: 0.0 Max: 0.0
B System Now: 3.3% Min: 0.0% Avg: 3.5% Max: 9.0% B Cache Now: 875.0M Min: 839.1M Avg: 867.7M Max: 875.0M
O Wait Now: 0.0% Min: 0.0% Avg: 0.0% Max: 0.0% O Buffer Now: 839.5M Min: 838.6M Avg: 839.1M Max: 839.5M
B Steal Now: 0.0% Min: 0.0% Avg: 0.0% Max: 0.0% O Free Now: 94.2G Min: 93.9G Avg: 118.8G Max: 181.0G
B Sintr Now: ©0.0% Min: 0.0% Avg: 0.0% Max: 0.0% B Swap Now: 36.7M Min: 36.7M Avg: 36.7M Max: 36.7M
O Idle Now: 0.0% Min: 0.0% Avg: 12.8% Max: 100. 0% B Total Now: 251.8G Min: 251.8G Avg: 251.8G Max: 251.8G

Current Slurm profiling

« Slurm support profiling of applications using HDF5 as storage
- It gets resource usage every few seconds
- Stores the information in an HDF5 file per host

- Once the job is finished the users have to merge all the .hd5 files to
create a single per job file

Current Slurm profiling (1)

* Pros

— No need for a central monitoring storage or to send data though
network

— Uses the existing shared filesystem
- Light-weight collection and storage of data

« Cons
- If one node dies, the HDF5 file may be corrupt and irrecoverable
- No data can be retrieved until the job finishes
— Filesystem can not be mounted with root squash

Our solution

* Using the same base as the HDF5
profiling plugin, export the
information to an InfluxDB server

» Collects exactly the same
information as the HDF5 plugin

* A small buffer is used to avoid
sending data for every sample

collected

* [nformation is sent to the central

server using libcurl

Scheduling Monitoring
Servers Servers
\\
~ w7 ~
NS ST
S — Grafana
Slurm E& i

Check jobs performance

Login Nodes

Store job performance data

3
Slurmd

Compute Nodes

InfluxDB and Grafana

* “InfluxDB is an open source database written in Go specifically to handle
time series data with high availability and high performance requirements.”
influxdata.com

 InfluxDB has a REST API to insert and query data

 Integrated with Grafana for nice dashboards

el 5 InfluxDB

Metrics collected

Default metrics:

CPUFrequency RSS
CPUTime ReadMB
CPUUtilization WriteMB

Pages

Additional profiling plugins it is possible to collect information from Infiniband, Lustre

and Energy

Configuration

* 3 new parameters added to the acct_gather.conf file
— ProfileInfluxDBHost: the host where to send the data to
- ProfileInfluxDBDatabase: the database in influx where to store the data
- ProfileInfluxDBDefault: Default profiling level

» Default profiling level set to ALL if nothing else specified to be able to also
collect information from the job script

Sending data to InfluxDB

« A small 16KB buffer is used to aggregate some data before sending

* The influx line protocol is used to send the data

- METRIC,(TAGS) value=VALUE (TIMESTAMP)

- CPUTime job=24,step=1,task=2,host=node001 value=99 1460713153

* Floating point data is sent with 2 decimals precission

Sending data (II)

 Information is sent through curl to the database server
— INFLUXDB_SERVER/write?db=slurm&rp=default&precision=s

— If an error is returned by the server the data is dropped
- Some profiling data may be lost

* You can also send the data to a Logstash server to store it in a different DB.

Our solution (II)

* Pros
- Light-weight collection and storage of data
- All the information is available almost in real-time

- No information stored locally on the nodes, and no possibility of data
corruption due to a node crash

- Information available per job/task enhances understanding of the
usage
* Cons
- Needs a central server where to send all the collected data.

Examples

CPU last custom
100

80

Percent

B 9 20: 00

. 96. 7% Min: ©0.0% Avg: 83.7% Max: 97.8%
0.0% Min: ©0.0% Avg: 0.0% Max: 0.0%
3.3% Min: 0.0% Avg: 3.5% Max: 9.0%
0.0% Min: 0.0% Avg: 0.0% Max: 0.0%

o 0.0% Min: 0.0% Avg: 0.0% Max: 0.0%
0.0% Min: 0.0% Avg: 0.0% Max: 0.0%

0% 1 0% Avg: 12.8% Max: 100. 0%

CPU usage

19:40 19:45 19:50

== CPUUtilization {job: 2208} == CPUUtilization {job: 2209}

Examples

48 GiB
38 GiB
29 GiB
19 GiB
10 GiB

0 KiB
19:40 19:45

= RSS {job: 2208} == RSS {job: 2209}

300 G

.

Memory last custom

RAM usage

Examples

CPU usage

19:40 19:45 19:50

== CPUUtilization {job: 2208} == CPUUltilization {job: 2209}

RAM usage
48 GiB

38 GiB

29 GiB

19 GiB

10 GiB

0 KiB
19:40 19:45

== RSS {job: 2208} == RSS {job: 2209}

Conclusions

» Easy to setup monitoring system
- 1 daemon
- 1 config file in the compute nodes

* Real-time monitoring => faster reactions to issues
« Better monitoring => better understanding of the usage of the cluster

* Monitoring information related to jobs and not only nodes

GITHUB

https://github.com/ctenoy/influxdb-slurm-monitoring

References

InfluxDB: http://www.influxdata.com

Grafana: http://www.grafana.org

Slurm:; http://slurm.schedmd.com

Slurm profiling: http://slurm.schedmd.com/hdf5_profile_user_guide.html|

Doing now what patients need next

