

A Slurm Odyssey: Slurm at Harvard FAS Research Computing

Paul Edmon, PhD Harvard - Research Computing Slurm User Group 2017 Berkeley, CA

Overview

- Research Computing at Harvard
- Odyssey
- Slurm on Odyssey
- Monitoring and Optimizing Slurm
- Future Work

Research Computing

Job Openings

- Area Lead, Data Science & Research Facilitation
- Sr. Site Reliability Engineer
- Software Infrastructure Engineer
- Research Computing Support Specialist
- Visit: <u>https://www.rc.fas.harvard.edu/about/employment/</u>

Harvard's Largest Cluster 60K+ Cores 35PB+ Storage

Odyssey 3

- 29 Dell M1000 Chassis with 16 M630 Blades: 464 nodes
- Each Blade has 128 GB and two 16 Core Intel Broadwell Chips: 14,848 cores
- Connected by Mellanox FDR Interconnect
- Slated for community release November 2017

- Odyssey 1.0 ran LSF, Odyssey 2.0+ has been using Slurm since 2013 beginning with version 2.6.5
- Current Slurm version 17.02.7
 - Upgrade to keep pace with minor releases
 - For major releases we wait till first .1 release to ensure stability
 - Built with:
 - Lua
 - MariaDB
 - HWLoc
 - PMI2
- Slurm Master CentOS 7, Compute Nodes CentOS 6
 Planning on full CentOS 7 by December 2017

	general	serial_requeue	Interact	Bigmem	Unrestricted
Time Limit	7 days	7 days	3 days	No limit	No limit
# Nodes	134	1289	8	7	8
# Cores/Node	64	Varies	64	64	64
Memory/Node (GB)	256	Varies	256	512	256

- 116 Partitions, mostly for various PI owned hardware
- TRES Billing: Memory: 0.25G and AMD: 1CPU, Sandy Bridge: 2CPU and Haswell/Broadwell: 4CPU, and 0.5 for serial_requeue

Scheduler Parameters

Primary Loop

HARVARD

VERI

- default_queue_depth: PartitionNumber*10
- partition_job_depth: 10
- Backfill Loop
 - bf_continue
 - bf_window: 11520 min
 - bf_resolution: 600 s
 - bf_max_job_test: 10000
 - bf_max_job_start: 1000
 - bf_max_job_user: 10
 - bf_min_prio_reserve: 10000000 (equivalent of Fairshare 0.5)
- Other Parameters
 - preempt_youngest_first
 - max_rpc_cnt: 8

- Scheduling Priority:
 - Fairshare
 - Each Group gets 100
 - Groups that purchase hardware get Fairshare:
 - AMD: 1
 - Ivy Bridge: 2
 - Broadwell: 4
 - Fairshare HalfLife: 2 days
 - Job Age
 - Maximum score is equivalent to Fairshare 0.5
 - 7 day maximum score

- https://github.com/fasrc/slurm-diamond-collector
- Giovanni Torres' Sdiag Monitor

Testing And Optimization

- https://github.com/fasrc/stdg
- Simple bash scripts that generate test decks based on a configuration file
- Performance Testing
 - Odyssey 2 grew from 28,000 cores to 60,000 cores. User count and number of jobs also increased.
 - Engaged in a study to optimize scheduler to maximize throughput and lower latency
 - Changes
 - AMD Abu Dhabi -> Intel Haswell
 - HDD -> SSD
 - Mysql 5.1 -> MariaDB 10.1.18
 - CentOS 6 -> CentOS 7
 - Result: 10x speed up in scheduler performance

Fairshare Testing

Future Work

- Consolidate Partitions
 - Make High Priority Partition with a Fairshare Gate
 - Move From PI Owned Partitions to Fairshare Resource Allocation
 - Make GPU Specific Requeue Queue
 - Use Constraints for Serial Queues
- Integrate Fairshare Calculation and Assignment with User Portal
- Feature Requests:
 - Have Pending Jobs Count Against Fairshare
 - Reservation Charge Back
 - Negative Match Constraint
 - slurm.conf Syntax Checker