Introduction to Slurm

Tim Wickberg
SchedMD

Slurm User Group Meeting 2017
Outline

- Roles of resource manager and job scheduler
- Slurm description and design goals
- Slurm architecture and plugins
- Slurm configuration files and commands
- Accounting
Outline

- Roles of resource manager and job scheduler
- Slurm description and design goals
- Slurm architecture and plugins
- Slurm config files and commands
- Accounting
Role of a Resource Manager

- The “glue” for a parallel computer to execute parallel jobs
- It should make a parallel computer as almost easy to use as a PC

On a PC.
Execute program “a.out”

```
a.out
```

On a cluster.
Execute 8 copies of “a.out”

```
srun -n8 a.out
```

- MPI would typically be used to manage communications within the parallel program
Roles of a Resource Manager

- Allocate resources within a cluster

- Launch and otherwise manage jobs

Nodes (typically 1 IP address)

Memory

NUMA boards

Interconnect/Switch resources

Licenses

Generic Resources (e.g. GPUs)

Sockets

Cores

HyperThreads

Copyright 2017 SchedMD LLC
http://www.schedmd.com
Role of a Job Scheduler

- When there is more work than resources, the job scheduler manages queue(s) of work
 - Supports complex scheduling algorithms
 - Optimized for network topology, fair-share scheduling, advanced reservations, preemption, gang scheduling (time-slicing jobs), backfill scheduling, etc.
 - Job can be prioritized using highly configurable parameters such as job age, job partition, job size, job QOS, etc.
 - Supports resource limits (by queue, user, group, etc.)
Examples

<table>
<thead>
<tr>
<th>Resource Managers</th>
<th>Schedulers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPS (Cray)</td>
<td>Maui</td>
</tr>
<tr>
<td>Torque</td>
<td>Moab</td>
</tr>
<tr>
<td>LoadLeveler (IBM)</td>
<td></td>
</tr>
<tr>
<td>Slurm</td>
<td></td>
</tr>
<tr>
<td>LSF</td>
<td></td>
</tr>
<tr>
<td>PBS Pro</td>
<td></td>
</tr>
</tbody>
</table>

Many span both roles

Slurm started as a resource manager (the “rm” in Slurm) and added scheduling logic later
Outline

- Roles of resource manager and job scheduler
- **Slurm** description and design goals
- Slurm architecture and plugins
- Slurm config files and commands
- Accounting
What is Slurm?

- Historically Slurm was an acronym standing for
 - Simple Linux Utility for Resource Management
- Development started in 2002 at Lawrence Livermore National Laboratory as a resource manager for Linux clusters
- Sophisticated scheduling plugins added in 2008
- About 500,000 lines of C code today (plus test suite and docs)
- Used on many of the world's largest computers
- Active global development community
Slurm Design Goals

- Highly scalable (managing 3.1 million core Tianhe-2, tested to much larger systems using emulation)
- Open source (GPL version 2, available on Github)
- System administrator friendly
- Secure
- Fault-tolerant (no single point of failure)
- Portable - targeting POSIX2008.1 and C99
Slurm Portability

- Autoconf configuration engine adapts to environment
- Provides scheduling framework with general-purpose plugin mechanism. System administrator can extensively customize installation using a building-block approach
- Various system-specific plugins available and more under development (e.g. select/bluegene, select/cray)
- Huge range of use cases:
 - Intel's “cluster on a chip”: Simple resource manager
 - Sophisticated workload management at HPC sites
Outline

- Roles of resource manager and job scheduler
- Slurm description and design goals
- Slurm architecture and plugins
- Slurm config files and commands
- Accounting
Cluster Architecture

- **Slurm user tools**
- **slurmctld (master)**
- **slurmd (backup)**
- **slurmd (backup)**
- **slurmd (master)**
- **MySQL**
- **Accounting and configuration records**

Slurm daemons on compute nodes
(Note hierarchical communications with configurable fanout)
Typical Enterprise Architecture

Slurm user tools

Slurm (cluster 1)

Slurm (cluster N)

Slurm administration tools

Accounting data

slurmd

MySQL

User and bank Limits and preferences

Accounting and configuration records

Copyright 2017 SchedMD LLC
http://www.schedmd.com
Daemons

● **slurmctld** – Central controller (typically one per cluster)
 ○ Monitors state of resources
 ○ Manages job queues
 ○ Allocates resources

● **slurmdbd** – Database daemon (typically one per enterprise)
 ○ Collects accounting information
 ○ Uploads configuration information (limits, fair-share, etc.) to slurmctld
Daemons

- **slurmd** – Compute node daemon (typically one per compute node)
 - Launches and manages slurmstepd (see below)
 - Small and very light-weight
 - Quiescent after launch except for optional accounting
 - Supports hierarchical communications with configurable fanout

- **slurmstepd** – Job step shepherd
 - Launched for batch job and each job step
 - Launches user application tasks
 - Manages application I/O, signals, etc.
Plugins

- Dynamically linked objects loaded at run time based upon configuration file and/or user options
- 100+ plugins of 26 different varieties currently available
 - Network topology: 3D torus, tree, etc
 - MPI: OpenMPI, MPICH1, MVAPICH, MPICH2, etc
 - External sensors: Temperature, power consumption, etc.

<table>
<thead>
<tr>
<th>Slurm Kernel (65% of code)</th>
<th>Authentication Plugin</th>
<th>MPI Plugin</th>
<th>Checkpoint Plugin</th>
<th>Topology Plugin</th>
<th>Accounting Storage Plugin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Plugin</td>
<td>MPI Plugin</td>
<td>Checkpoint Plugin</td>
<td>Topology Plugin</td>
<td>Accounting Storage Plugin</td>
<td></td>
</tr>
<tr>
<td>Munge</td>
<td>pmi2</td>
<td>BLCR</td>
<td>Tree</td>
<td>MySQL</td>
<td></td>
</tr>
</tbody>
</table>
Plugin Design

- Plugins typically loaded when the daemon or command starts and persist indefinitely
- Provide a level of indirection to a configurable underlying function

Write job completion accounting record

- Write it to text file
- Write it to slurmdbd daemon
- Write it to MySQL database
- Ignore record
Plugin Development

- APIs are all documented for custom development (e.g. GreenSpot for optimized use of green energy sources)
- Most plugins have several examples available
- Some plugins have a LUA script interface
Job Submit Plugin

- Call for each job submission or modification
- Can be used to set default values or enforce limits using functionality outside of Slurm proper

Two functions need to be supplied:

```c
int job_submit(struct job_descriptor *job_desc, uint32_t submit_uid);
int job_modify(struct job_descriptor *job_desc, struct job_record *job_ptr);
```
Outline

● Roles of resource manager and job scheduler
● Slurm description and design goals
● Slurm architecture and plugins
● Slurm config files and commands
● Accounting
Slurm Configuration

- **slurm.conf**
 - General conf
 - Plugin activation
 - Sched params
 - Node definition
 - Partition conf

- **slurmdbd.conf**
 - Describes slurmdbd
 - Archive/Purge parameters
 - Storage options
Slurm Configuration

- topology.conf
- gres.conf
- cgroup.conf

- Others: burst_buffer.conf, acct_gather.conf, knl.conf, etc.
Commands Overview

- **salloc**
- **sbatch**
- **srun**
- **sinfo**
- **scontrol**
- **scancel**

Job Submission

- **salloc**
- **sbatch**
- **srun**

Interactive jobs

- **sinfo**
- **scontrol**
- **scancel**

Node/Part info

- **sinfo**
- **scontrol**

Reservations

- **scontrol**

Slurm state modify

- **scontrol**

Job signaling

- **scancel**

Sched queue, diagnostics, factors

- **squeue**
- **sdiag**
- **sprio**
- **sstat**

Job/Step status

- **squeue**
- **sdiag**
- **sprio**
- **sstat**
Commands Overview

- sacct
- sacctmgr
- sshare
- sreport

Accounting data
- view/modify
- FairShare info
- Report generation

- sview
- smap

Graphical interfaces

- sattach
- sbcast
- strigger

I/O attach to jobs, file transmission to nodes, events triggering

- --help, --usage
- man pages
- APIs make new tools development easier
Outline

● Roles of resource manager and job scheduler
● Slurm description and design goals
● Slurm architecture and plugins
● Slurm config files and commands
● Accounting
Database Use

- Accounting information written to a database plus
 - Information pushed out live to scheduler daemons
 - Quality of Service (QOS) definitions
 - Fair-share resource allocations
 - Many limits (max job count, max job size, etc)
 - Based upon hierarchical accounts
 - Limits by user AND by accounts

“All I can say is wow – this is the most flexible, useful scheduling tool I’ve ever run across.”
Adam Todorski, Rensselaer Polytechnic Institute
Hierarchichal Account Example

Root
100%

Division A
33.3%

Division B
33.3%

Division C
33.3%

Group Alpha
50%

Group Beta
30%

Group Gamma
20%

Pat
25%

Bob
25%

Ted
30%

Pam
20%

Copyright 2017 SchedMD LLC
http://www.schedmd.com
Hierarchical Accounts

- All users are not created equal
 - Different shares of resources
 - Different measures of being over- or under-served
 - Different limits

- There are many limits available
 - Per Job limits (e.g. MaxNodes)
 - Aggregate limits by user, account or QOS (e.g. GrpJobs)
 - A single user may have different shares and limits in different accounts, QOS or partitions
Summary

● Brief introduction to Slurm
● Many more features
 ○ Job dependencies
 ○ Fine-grained task layout
 ○ Wrapper scripts for other workload manager command line interfaces
 ○ Burst Buffers, TRES, KNL support, cloud bursting, X11 forwarding, etc.
● Documentation - https://slurm.schedmd.com
● Github - https://github.com/SchedMD/slurm