Generalized Hypercube (GHC)

A topology plugin

M. Clayer
A. Faure

- HyperCube
- Generalized HyperCube
- Slurm configuration
- Examples

Hypercube topology

Unit Hypercube:

A n-dimensional unit hypercube is defined by 2^{n} point, which coordinates are composed by 0 or 1 .
These points represent the corners of the unit hypercube. For $n=2$: a square, $n=3$: a cube.

Hypercube topology

Unit Hypercube:

A n-dimensional unit
hypercube is defined by 2^{n} point, which coordinates are composed by 0 or 1 .
These points represent the corners of the unit hypercube. For $n=2$: a square, $n=3$: a cube.

a cube, $n=3$

Hypercube topology

Unit Hypercube:

A n-dimensional unit hypercube is defined by 2^{n} point, which coordinates are composed by 0 or 1 .
These points represent the corners of the unit hypercube. For $n=2$: a square, $n=3$: a cube.

two cubes, $n=3$

Hypercube topology

Unit Hypercube:

A n-dimensional unit hypercube is defined by 2^{n} point, which coordinates are composed by 0 or 1 .
These points represent the corners of the unit hypercube. For $n=2$: a square, $n=3$: a cube.

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch
- we connect \mathcal{T} terminals on each switches

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch
- we connect \mathcal{T} terminals on each switches
- Maximum of $\mathcal{T} \times 2^{n}$ terminals

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch
- we connect \mathcal{T} terminals on each switches
- Maximum of $\mathcal{T} \times 2^{n}$ terminals
- number of hops between 2 terminals: $2+n$

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch
- we connect \mathcal{T} terminals on each switches
- Maximum of $\mathcal{T} \times 2^{n}$ terminals
- number of hops between 2 terminals: $2+n$

Limitation

Hypercube have a strong constraint: the number of switches: 2^{n}

a tesseract, $n=4$

Hypercube topology

Hypercube Topology:

- Each corner represent a switch
- we connect \mathcal{T} terminals on each switches
- Maximum of $\mathcal{T} \times 2^{n}$ terminals
- number of hops between 2 terminals: $2+n$

Limitation

Hypercube have a strong constraint: the number of switches: 2^{n}

a tesseract, $n=4$

A similar topology avoid this constraint: the Generalized HyperCube topology (GHC)

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension:
\mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$

$$
n=2, \mathcal{S}=(3,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch

$$
n=2, \mathcal{S}=(3,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

$$
n=2, \mathcal{S}=(3,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

$n=2, \mathcal{S}=(3,3)$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

$$
n=2, \mathcal{S}=(4,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

$$
n=2, \mathcal{S}=(4,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

Note

$$
n=2, \mathcal{S}=(4,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{i}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

Note

$$
n=2, \mathcal{S}=(4,3)
$$

Generalized HyperCube

GHC

Defining a n-dimensional GHC topology by:

- a number of switches for each dimension: \mathcal{S}_{i}
\Rightarrow number total of switches: $\prod_{i=1}^{n} S_{\boldsymbol{i}}$
- a number of terminal \mathcal{T} per switch
- in each dimension, switches are fully connected

Note

$$
n=2, \mathcal{S}=(4,3)
$$

Proposition

2 switches are linked \Leftrightarrow Their coordinates differ by only one coordinate

Framework

> topology.conf
> SwitchName=sw1 Nodes=n0 Switches=sw2,sw4 SwitchName=sw2 Nodes=n1 Switches=sw1,sw3 SwitchName=sw3 Nodes=n2 Switches=sw2,sw4 SwitchName=sw4 Nodes=n3 Switches=sw1,sw3
M. Clayer
A. Faure
(c) Atos

Framework

topology.conf

SwitchName=sw1 Nodes=n0 Switches=sw2,sw4 SwitchName=sw2 Nodes=n1 Switches=sw1,sw3 SwitchName=sw3 Nodes=n2 Switches=sw2,sw4 SwitchName=sw4 Nodes=n3 Switches=sw1,sw3

Initialisation

topology.conf permit to compute:

- topology parameters (dimension n and \mathcal{S})
- set up coordinates on switches

Framework

topology.conf

SwitchName=sw1 Nodes=n0 Switches=sw2,sw4 SwitchName=sw2 Nodes=n1 Switches=sw1,sw3 SwitchName=sw3 Nodes=n2 Switches=sw2,sw4 SwitchName=sw4 Nodes=n3 Switches=sw1,sw3

slurm.conf

TopologyPlugin=topology/ghc Select Type=select/linear

Initialisation

topology.conf permit to compute:

- topology parameters (dimension n and \mathcal{S})
- set up coordinates on switches

Framework

topology.conf

SwitchName=sw1 Nodes=n0 Switches=sw2,sw4 SwitchName=sw2 Nodes=n1 Switches=sw1,sw3 SwitchName=sw3 Nodes=n2 Switches=sw2,sw4 SwitchName=sw4 Nodes=n3 Switches=sw1,sw3

Initialisation

topology.conf permit to compute:

- topology parameters (dimension n and \mathcal{S})
- set up coordinates on switches

slurm.conf

TopologyPlugin=topology/ghc
SelectType=select/linear

select linear

- use of Slurm best fit algorithm \Rightarrow linear path across the GHC topology

linear Path \& switches selection

How to get a linear path

- Hilbert's curve
- map the switches to n-dimensional space into a 1-dimensional space
- achieve a high degree of locality for jobs

2D Hilbert's curve
(c) Atos

linear Path \& switches selection

How to get a linear path

- Hilbert's curve
- map the switches to n-dimensional space into a 1-dimensional space
- achieve a high degree of locality for jobs

switches selection

- loop through the Hilbert curve
- create a cluster:
of neighboring nodes
- compute the variance for this cluster:
based on the distance set, between each cluster's nodes.
- choose the cluster with the lowest variance
A. Faure
(c) Atos

Example - scontrol show topology

Example - scontrol show topology

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch

```
slurm$ scontrol show topology
```

GHC NbSwitches: 16 Dimensions: 2
Dimension 1: 4 Dimension 2: 4
SwitchName=sw1 NodeCount=2 Nodes=node[0-1]

> Switches=sw2,sw3, sw4, sw5, sw9, sw13

$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - scontrol show topology

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
153 sleep slurm R 0:02 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
153 sleep slurm R 0:02 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
154 sleep slurm R 0:02 4 node[5-8]
153 sleep slurm R 0:07 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
154 sleep slurm R 0:02 4 node[5-8]
153 sleep slurm R 0:07 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
155 sleep slurm R 0:02 4 node[9-10,13-14]
154 sleep slurm R 0:07 4 node[5-8]
153 sleep slurm R 0:12 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
155 sleep slurm R 0:02 4 node[9-10,13-14]
154 sleep slurm R 0:07 4 node[5-8]
153 sleep slurm R 0:12 4 node[1-4]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
156 sleep slurm R 0:02 4 node[11-12,15-16]
155 sleep slurm R 0:07 4 node[9-10,13-14]
154 sleep slurm R 0:12 4 node[5-8]
153 sleep slurm R 0:17 4 node[1-4]
```


$2 \mathcal{D}, \mathcal{S}=(4,4)$
(c) Atos
A. Faure

Example - jobs allocation
Bull
atos technologies

Example - jobs allocation

Example - launch of 4 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch
launch multiple srun -n4:

```
slurm$ srun -n4 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
156 sleep slurm R 0:02 4 node[11-12,15-16]
155 sleep slurm R 0:07 4 node[9-10,13-14]
154 sleep slurm R 0:12 4 node[5-8]
153 sleep slurm R 0:17 4 node[1-4]
```


$2 \mathcal{D}, \mathcal{S}=(4,4)$
(c) Atos
A. Faure

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos
A. Faure

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos
A. Faure

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos
A. Faure

Example - jobs allocation

Example - launch of 3 tasks

$n=2, \mathcal{S}=(4,4)$, with 1 node per switch launch multiple srun -n3:

```
slurm$ srun -n3 sleep 50 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
    197 sleep slurm R 0:01 3 node[1,3-4]
    196 sleep slurm R 0:05 3 node[7,11,15]
    195 sleep slurm R 0:09 3 node[8,12,16]
    194 sleep slurm R 0:11 3 node[2,6,14]
    193 sleep slurm R 0:15 3 node[5,9,13]
```


$$
2 \mathcal{D}, \mathcal{S}=(4,4)
$$

(c) Atos
A. Faure

Example - jobs allocation

Example - launch of 800 tasks

$n=6, \mathcal{S}=(2,3,3,3,5,5)(1350$ switches $)$, with 1 node per switch
launch srun -n800 sleep 120\&:

```
slurm$ srun -n800 sleep 120 &
slurm$ squeue
JOBID NAME USER ST TIME NODES NODELIST
200 sleep slurm R 0:50 800 node[0-11,18-29,36-39,42-45,54-65,72-83,90-93,96-99,
108-119,126-137,144-147,150-153,162-173,180-191,198-201, 204-207,216-227, 234-245,
252-255, 258-261, 270-281, 288-299, 306-309, 312-315, 324-335, 342-353, 360-363, 366-369,
378-389, 396-407,414-417,420-423,432-443,450-461,468-471,474-477,486-497,504-515,
522-525,528-531,540-551,558-569,576-579,582-585,594-605,612-623,630-633,636-639,
648-659,666-677,684-687,690-693,702-713,720-731,738-741,744-747,756-767,774-785,
792-795,798-801,810-821,828-839,846-849,852-855,864-875,882-893,900-903,906-909,918-929,
936-947,954-957,960-963,972-983,990-1001,1008-1011,1014-1017,1026-1037,1044-1055,1062-1065,
1068-1071,1080-1091,1098-1109,1116-1119,1122-1125,1134-1145,1152-1163,1170-1173,1176-1179.
```

M. Clayer
A. Faure
(c) Atos

Example - jobs allocation

Future work

- GHC with select cons_res
- Scalability and Efficiency evaluation
- Validate on a physical cluster
- Push to the community

Thanks for your attention!

Any questions?

Contact: mathis.clayer@atos.net

