& cscs ETH:zurich
(.. Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre
e 1,)
- .’
./ f‘ ’
‘ 1 e
\

Tuning Slurm the CSCS way

Slurm User Group 2018
Miguel Gila, CSCS
September 26, 2018

Three things we do a bit differently

1. RM-Replay
2. GPU Reporting with Slurm

3. Slurm command logging

\:‘:‘ CSCS Tuning Slurm the CSCSway | 2 E'HZUFICh

<& _ cCscCs ETH:irich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

To be published during SC18

RM-Replay: A High-Fidelity Tuning,
Optimization and Exploration Tool for Resource Management

Maxime Martinasso, CSCS

https://github.com/eth-cscs/slurm-replay

https://github.com/eth-cscs/slurm-replay

RM-Replay

= Like probably every other HPC center out there, we always have (recurrent)
users complaining about this:

= “Why are there available nodes and my jobs are not running??”

= Well, you can'’t satisfy everyone, but you sure can tune the configuration to be
more effective in keeping users happier

= Of course, this also depends on users doing something on their side. But that’s a
different story...

\:‘:‘ CSCS Tuning Slurm the CSCSway | 4 E'HZUFICh

RM-Replay

= How can you evaluate changes in the Slurm configuration and how they affect
scheduling and the usage of the machine?

= RM-Replay can replay the submissions done in a period of time and give you an
estimation of how busy the machine would have been with the new settings,
compared to the original configuration

= Built as a Docker container. Can naturally be executed in Shifter

= With a clever approach it uses unmodified Slurm source code with a few
additions to re-play scheduling much faster than real time

\:‘:‘ CSCS Tuning Slurm the CSCSway | 5 E'HZUFICh

How does it work?

...

Slurm-Replay Slurm
processes processes
Job Runner 4@ Stepd
Clock rate Ticker —P[Stock Slurmd Slurm
. [configuration
T@ T\ files

Submitter 2 Slurmctlid

Database dump:
@ ¢@ . \users, accounts,...

Node Controller soL
Slurmdbd [-J»

Workload
trace

database

‘Docker Container

\““ CSCS Tuning Slurm the CSCSway | 6 Er,"zur/ch

How do you use it?

Generate job
dependencies

Create workload off
slurmDBD

Get a unmodified
SlurmDBD dump

Run the replay
within the container

$ python ./extractlog.py > daint_jobdependency.txt

$ submitter/./trace_builder_mysql -p XXX -u YYY -s '2018-01-01 01:00:00° \
-e '2018-01-01 01:30:00' -d slurmZZZ -h AAA.BBB.com -P 1234 -c daint \
-x daint_jobdependency.txt -f daint.20180101T010000 20180101T013000.trace

$ mysgldump -u XXX -p -P 1234 -h AAA.BBB.com slurmZZZ acct_table acct_coord_table \
gos_table tres_table user_table daint_assoc_table > slurmdb_tbl slurm-17.02.9.sql

$ docker run --rm -it --volume /mydir/data:/replayuser/data \
mmxcscs/slurm-replay:replayuser_slurm-17.02.9

$./start _slurm.sh -w ..data/daint.20180101T7010000 20180101T013000.trace \
-r 9.05 -n SR1

“ CSCS [GPU=406] Makespan=3600 Util=0.94495123 Avg Wait=(175.03846154,760.43499697,26,635,1467,4.3444)

Dispersion=0.18711216 Slowdown=0.00270158 Throughtput=245

4

N
N

¢,

./trace_metrics -w replay.daint.20180101T010000_20180101T013000.trace -r 1
Range: min_start=1514761200 [0,1] start_range=1514761200 end_range=1514764800 all=583 preset=529 (otherp=1)

[ALL=583] Makespan=3600 Util=0.83171724 Avg Wait=(568.30769231,3754.01788857,13,207,1467,6.6056)
Dispersion=0.13148193 Slowdown=0.00188138 Throughtput=271

[MC=176] Makespan=3600 Util=0.50134048 Avg Wait=(135.09523810,405.52628944,21,207,669,3.0018)
Dispersion=0.24988875 Slowdown=0.00772033 Throughtput=26

How do we want to use it?

= During development, we’ve used the tool to identify two important points:

= Using the switch options increases the fragmentation of the schedule reducing by 10% the
job throughput

= When users provide a better runtime accuracy of their jobs, this decreases the likelihood that
their jobs will have a long waiting time in the queue

= |deally, an auto-tuning framework could potentially make use of this tool in order
to automatically configure Slurm and react to change in the job mix

= But for now the plan is to put this on a dedicated system and use it analyze major
changes to our configuration and what-if scenarios

\:‘:‘ CSCS Tuning Slurm the CSCSway | 8 E'HZUFICh

<& _ CscCs ETH:irich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

GPU Reportingl’!

[*] Also presented by Nick Cardo at the Cray User Group 2018

Describing the problem

A batch job is submitted to a compute node containing a GPU
= Did they utilize the GPU or just the node’s processor?

Easy to tell if a GPU was requested

= Can check GRES
= Can check node name

Hard to tell if a GPU was used from existing accounting

How to report GPU usage in a meaningful way?

\:‘:‘ CSCS Tuning Slurm the CSCS way | 10 ETH:irich

Available tools

= nvidia-smi

Nid00032: > nvidia-smi -q -d accounting

Timestamp
2018

: Thu May 17 11:52:07

S 4

Tuning Slurm the CSCS way 11

Driver Version : 384.111
Attached GPUs : 1
GPU 00000000:02:00.0
Accounting Mode : Enabled
Accounting Mode Buffer Size : 1920
Accounted Processes
Process ID : 10757
GPU Utilization : 0 %
Memory Utilization : 0 %
Max memory usage : 291 MiB
Time : 272 ms
Is Running : 0
Process ID : 15098
GPU Utilization : 71 %
Memory Utilization : 5 %
Max memory usage : 289 MiB
Time : 25194 ms
Is Running : 0
Process ID : 15125
GPU Utilization : 93 %
Memory Utilization : 6 %
Max memory usage : 289 MiB
Time : 91777 ms
Is Running : 0
Process ID : 4448
GPU Utilization : 93 %
Memory Utilization : 6 %
Max memory usage : 0 MiB
Time : 91899 ms
% cscs

= RUR

= Tool present only on Cray systems

= Can be used to aggregate data coming
from different plugins, including GPU
counters

= Needs modifications to be used with
native Slurm and not ALPS

= Slurm prolog/epilog

= Used to call Cray RUR to start/stop counter
collection

ETH:irich

How to store data in a meaningful way?

= Store data in Slurm job accounting record

= Keeps all job data together, no separate database or utilities
= Reuse an existing text field — AdminComment
= Use JSON format to store multiple pieces of data

= Data is sent to SlurmDBD with a modified RUR plugin that runs at job end

/usr/bin/mysgl -h HOST -u DBUSER -pDBPASS DATABASE -e 'update %s job table set admin comment=\"%s\" where
id job=%s and id user=%s'" % (cluster,jout.replace("\"",'\\"'),jobid,uid)

= Extractable with sacct

" sacct —-o AdminComment

{“gpustats”:
{

“maxgpusecs”: 146, +— _____—— High Water Marks
“maxmem”: 17034117120,

“gpupids”: 1, <«—

“summem”: 17034117120,

“gpusecs”: 146 +— *\\\\\“-\\‘

}

GPU lIdentifier, only 1 installed

Accumlated memory and time

\:‘:‘ CSCS Tuning Slurm the CSCS way | 12 ETH:irich

Batch Job Summary Report

= How to report GPU usage in a meaningful way?

Batch Job Lifetime

Batch Job Summary Report for Job "testl" (6802625) on daint

« Basic Job Details
1 18.31K joules_—If

gpusecs maxgpusecs

summem
________________ 1 GPU Statistics

/scratch/snx3000

L@ CSCS

< Scratch Inode Usage
1000000 j

Tuning Slurm the CSCS way 13 mZUrICh

Open questions

= RURis nice... But perhaps there could be a way to have similar functionality
embedded in Slurm itself?

= Would slurmd/slurmctld be able to do such aggregation?

= What about database fields for additional accounting data?

= Jobcomp/ElasticSearch plugin?

\:‘:‘ CSCS Tuning Slurm the CSCS way | 14 ETH:irich

<& _cCscCs ETH:irich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

Slurm command logging

Describing the problem

Jobs with bajillions of tasks

sacct -j XXXXXX |wc -1
25337

= Services have access to dedicated nodes that query Slurm and/or submit jobs

= Continuous Integration Systems (Jenkins, etc.)
= Special frontends (UNICORE, ARC)

= Users have access to login nodes to submit jobs

= Daint has a few login nodes
» |ntended to allow users to submit jobs and build apps
= But users can basically do whatever they want

= So, what do you do when
= User commands start timing out everywhere without any apparent reason? | gone

= Slurmctld logs show it being busy putting tasks on CNs for hours?
» This somehow tends to happen during weekends or at night...

Loops with failing tasks...

#!/bin/bash
#SBATCH -N 512
#SBATCH --time=05:05:05
while true; do

srun /usr/bin/false
done

Some loops are evil!

#!/bin/bash

while :

do

clear

squeue | grep JOBID
squeue | grep ${USER}
sleep 1

[2018-09-25T14:
[2018-09-25T14:
[2018-09-25T14:
[2018-09-25T14:
[2018-09-25T14:
[2018-09-25T14:
[2018-09-25T14:

41:
41:
41:
41:
41:
41:
41:

7.
.841]
7.
08.
08.
08.
08.

o7

832]

841]
592]
662]
671]
671]

debug:
debug:
debug:
debug:
debug:
debug:
debug:

_slurm _rpc_job pack alloc_info: JobId=840324 Nodelist=nid@0007 usec=2
laying out the 1 tasks on 1 hosts nid@eee7 dist 1

reserved ports 24790 for step 840324.6
freed ports 24790 for step 840324.6

_slurm _rpc_job pack alloc_info: JobId=840324 Nodelist=nid@0007 usec=2
laying out the 1 tasks on 1 hosts nid@eee7 dist 1

reserved ports 24791 for step 840324.7

30
\\0‘0 CSCS

Tuning Slurm the CSCS way | 16

ETH:irich

How do we know what users do?

= |deally, we would love Slurm to be able to rate-limit the amount of RPCs per
user/host/account

= But first, how can we identify precisely what users are doing?

* Yes, auditd is an option...
= But what’s the performance impact of enabling this on Cray’s version of the OS?

= What else is out there?

\:‘:‘ CSCS Tuning Slurm the CSCSway | 17 E'HZUFICh

Slurm patch to log user calls

diff -—git a/src/sacctmgr/sacctmgr.c b/src/sacctmgr/sacctmgr.c
index ed4ae35c79..1c354dd51a 100644

-—— a/src/sacctmgr/sacctmgr.c

+++ b/src/sacctmgr/sacctmgr.c

el UERESUERVAGE int main(int argc, char sxargv)

quiet_flag

readonly_flag
verbosity

+ log_command_execution_syslog(argc, argv);

slurm_conf_init(NULL);

log_init("sacctmgr", opts, SYSLOG_FACILITY_DAEMON, NULL);

diff ——git a/src/salloc/salloc.c b/src/salloc/salloc.c
index 876c0@a8ee5..1303a5f597 100644
-—— a/src/salloc/salloc.c
+++ b/src/salloc/salloc.c

LR ELACE int main(int argc, char skargv)
slurm_allocation_callbacks_t callbacks;
ListIterator iter_req, iter_resp;

+ log_command_execution_syslog(argc, argv);
slurm_conf_init (NULL);
debug_flags = slurm_get_debug_flags();
log_init(xbasename(argv[@]), logopt, @, NULL);

Tuning !

<@ CSCS

diff --git a/src/common/log.c b/src/common/log.c
index 28ace318c4..a75597%c2 100644
——— a/src/common/log.c

+++ b/src/common/log.c

a@ -79,6 +79,11 @@

#include "src/common/xmalloc.h"
#include "src/common/xstring.h"

+#include
+#include
+#include
+#include
t
#ifndef LINEBUFSIZE
define LINEBUFSIZE 256
#endif
extern int get_log_level(void)
level = MAX(level, log->opt.stderr_level);
return level;
}
+
+/* Undocumented, CSCS only: logs to syslog the execution of a command */
+void log_command_execution_syslog(int argc, char xkx argv){
+ int i =1;
uid_t uid = geteuid();
struct passwd xpw = getpwuid(uid);
static const int BUFFER_SIZE = 256;
char * buffer = malloc(sizeof(char) *x (BUFFER_SIZE + 1));

<syslog.h>
<stdlib.h>
<pwd. h>

<libgen.h>

if (getenv("SLURM_LOG_ACTIONS") && (buffer != NULL)) {
for (i=1; i<argc; i++) {
if (strlen(buffer) < BUFFER_SIZE)
strncat(buffer, argv[il, BUFFER_SIZE-strlen(buffer));
else
break;
}
setlogmask (LOG_UPTO (LOG_NOTICE));
openlog (basename(argv[@]), LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);
syslog (LOG_NOTICE, "User: %s, command: %s %s", pw—>pw_name, basename(argv[@]), buffer);

+
+
+
+
E // if we cannot allocate memory, skip and ignore
+ closelog ();

+

+}
diff --git a/src/common/log.h b/src/common/log.h

index bf55fel@b7..fd429f5761 100644

——— a/src/common/log. h

+++ b/src/common/log.h

e IRV GGE void debug3(const char %, ...) __attribute__ ((format (printf, 1, 2)));
void debug4(const char %, ...) __attribute__ ((format (printf, 1, 2)));

void debug5(const char %, ...) __attribute__ ((format (printf, 1, 2)));

+void log_command_execution_syslog(int argc, char sk argv);
+
#endif /x !'_LOG_H */

What are our users doing?

Visualize / Daint - Slurm commands per user Save Share Refresh < O Last15minutes >

source:daint10* AND application_name:(squeue OR sinfo OR scontrol OR shatch OR salloc OR sprio OR scancel OR srun) AND NOT ("sbatch --version") Uses lucene query syntax n
Add a filter +
© 1,600 © ®squeue
@ sbatch
@ scontrol
1,400
1,200

1,000

800

Count

600

400

200

username: Descending

(?:. CSC S Tuning Slurm the CSCS way 19

ETH:irich

What are our users doing?

Visualize / Daint - Slurm commands per user Save Share Refresh <€ @ Last7days
source:daint10* AND application_name:(squeue OR sinfo OR scontrol OR sbatch OR salloc OR sprio OR scancel OR srun) AND NOT ("sbatch --version") Uses lucene query syntax n
Add a filter +
b 1:600,000 © ®squeue
@ sbatch
@ salloc
@ scancel

Count

@ scontrol
/400,000 ® sinfo
1,200,000
1,000,000
800,000
600,000
400,000
B IIII
IleEEne=

=

HENEN)

! a

jenscscs

; :]] !

’ : .

(?:. CSCS Tuning Slurm the CSCS way l 20 mzurlch

What are our users doing?

Visualize / Daint - Slurm commands per user Save Share Refresh < O Last7days >

source:daint10* AND application_name:(squeue OR sinfo OR scontrol OR sbatch OR salloc OR sprio OR scancel OR srun) AND NOT ("sbatch --version") AND NOT squeue| Uses lucene query syntax n

source:daint10* AND application_name:(squeue OR sinfo OR scontrol OR sbatch OR salloc OR sprio OR scancel OR srun) AND NOT ("sbatch --version") AND NOT squeue

© © @ scontrol

@ sbatch

@ scancel
120,000 @ salloc
®ssinfo
® sprio

100,000

80,000

Count

60,000

jenscscs

CSCS Tuning Slurm the CSCS way 21 mzurICh

What are our users doing?

Visualize / New Visualization (unsaved) Save Share Refresh <€ O Last6émonths >

source:daint* AND application_name:(squeue OR sinfo OR scontrol OR sbatch OR salloc OR sprio OR scancel OR srun) AND NOT ("sbatch --version") Uses lucene query syntax n
Add a filter +

© © ®squeue

@ scontrol

@ sbatch

@ scancel
sinfo
sprio

@ salloc

field value Count
Command squeue 6,157,265 (76.0!

This new information is very useful

= We've detected a few good use cases where we have been able to help users
improve their usage of available tools

= Corner cases where a service needs to query a few hundreds of jobs every few minutes
= Users that abuse Shell loops or watch because they don’t know how things work below
= Usage of scontrol + awesome grep+awk combinations instead of sinfo

= Insane amounts of parallel sruns, which lead us to adapt GREASYT]

= Now we can identify, quickly, when a submission script or a job goes rogue

= Believe it or not, there is so much to learn from users!

[*] https://user.cscs.ch/tools/high throughput/

\:‘:‘ CSCS Tuning Slurm the CSCS way | 23 ETH:irich

https://user.cscs.ch/tools/high_throughput/

What now?

= Does anybody really need to have squeue open, refreshed every second, 24/7
(even at night) to see if his/her jobs are running??

= |s there any way to rate-limit what users do?
= \We love memcached ['l, can it be used here somehow?

= However, this partially highlights that there are valid use cases for alternative
ways to access Slurm:

= RESTful API
= Fully supported Python/Go bindings
= PySlurm is really cool, give it a try!

[*] See Nick Cardo’s presentation at SLUG17 (https://slurm.schedmd.com/SLUG17/Cardo-SLUG2017.pdf)

\:‘:‘ CSCS Tuning Slurm the CSCS way | 24 ETH:irich

https://slurm.schedmd.com/SLUG17/Cardo-SLUG2017.pdf

& . CSCS ETHzlirich

Centro Svizzero di Calcolo Scientifico
. Swiss National Supercomputing Centre

<

: 7o Waifp
ef =1 moam.randmf(q,.ﬁo
‘{Oﬁ/m’k)v&ooo ﬂn"(

Ty G J (o dadila i

Thank you for your attention.

