VMs and containers for a Slurm-based development cluster

September 18, 2019

François Diakhaté
CEA: The French Alternative Energies and Atomic Energy Commission

- 9 research centers in France
- Many areas of research including:
 - Low carbon energies,
 - Information and healthcare technologies
 - Defence and security
 - Fundamental research in the physical sciences and life sciences
- Large HPC infrastructures
 - 2 production compute centers
TGCC: Très Grand Centre de Calcul du CEA

- Hosts two main projects
- CCRT
 - Shared computing center for French industrial and research partners
 - Cobalt supercomputer (installed in 2016)
 - 1422 Intel Broadwell nodes (2x14 cores, 128GB), Infiniband EDR
 - 252 Intel Skylake nodes (2x20 cores, 192GB), Infiniband EDR
TGCC: Très Grand Centre de Calcul du CEA

- Hosts two main projects

- **GENCI (Grand Equipement National pour le Calcul Intensif)**
 - Part of the European PRACE project (Partnership for Advanced Computing in Europe)
 - Available for french academia, industries, and european PRACE members
 - Irène Joliot-Curie supercomputer (installed in 2017)
 - 1656 Skylake nodes (2x24 cores, 192GB), Infiniband EDR: 6,9 PF/s peak
 - 828 KNL nodes (68 cores, 96GB), Bull eXascale Interconnect: 2,5 PF/s peak
 - A 12 PF/s peak AMD Rome partition is currently being installed
TERA: CEA Defense computing center

- Part of the simulation project for French nuclear deterrence
- Tera-1000 supercomputer (installed in 2016)
 - 2192 Haswell nodes (32 cores, 128GB), Infiniband FDR: 2.6 PF/s peak
 - 8256 KNL nodes (68 cores, 192GB), Bull eXascale Interconnect: 23.4 PF/s peak
OCRE: A pre-production compute center for R&D

• A testbed for new hardware
 • From both user and sysadmin perspective
 • Many node partitions spanning a large number of technologies

• Computing resources for HPC R&D
 • Collaborations around new / experimental hardware
 • Development and evaluation of scientific applications and system tools
 • In a representative HPC cluster environment

• A pre-production environment
 • Staging for new features before deployment on production centers
 • Obtain feedback from users
 • Slurm-based cluster
 • Overall setup as close as possible to production clusters
Flexible compute clusters

HPC clusters must become more flexible

• A trend in all our clusters
 • More and more varied scientific communities
 • New software and frameworks not designed with HPC clusters in mind
 • Users must be able to easily deploy all kinds of software

• Applies especially for a cluster serving developers
 • Evaluate or develop software for all levels of the stack
 • Including system or kernel level software
 • Run continous integration tests in various environments
 • Reproduce bugs in specific setups

• VMs and containers can help achieving that flexibility
The pcocc tool

Private Cloud On A Compute Cluster

• **Bring “private cloud” features to a HPC cluster**
 • Deploy VMs and containers
 • Set up virtual networks

• **HPC oriented features**
 • Low overhead virtualization (NUMA awareness, Infiniband virtualization...)
 • Interfacing containers and HPC runtimes

• **Use the existing cluster infrastructure**
 • Slurm resource management, usual job allocation semantics
 • Number of tasks, cores and/or memory per task
 • A task can also be a VM
 • All nodes can be used for both regular jobs and hosting VMs
 • Usual scheduling, priorities, job management, accounting...
 • Images are stored in the shared parallel filesystem
 • Directories as image repositories
 • Directly accessible from compute nodes
Virtual clusters

Launching a virtual cluster

• **Example:**
 - `pcocc alloc -c 8 image1:32,image2:512`
 - Allocates 32 VM of one type and 512 VM of another type, each with 8 cores

• **Details:**
 - A slurm job is created to allocate the resources
 - A spank plugin setups virtualization resources during prolog
 - Virtual networks for the cluster are setup according to the VMs configurations
 - Qemu is launched as a user task
 - VM instances are created with ephemeral drives
 - Copy-on-Write using the repository image as reference
 - CPU and memory are configured according to the task allocation
 - NUMA topology is setup to match the host allocation
 - Each vCPU is bound to one of the allocated cores
 - Near native compute performance (2% overhead for HPL at 2116 cores)
 - Cancelling the job destroys VMs and cleans up nodes
Virtual clusters

Virtual Ethernet networks

• Create an isolated virtual Ethernet switch per virtual cluster
 • Virtual Ethernet interfaces are attached to VMs belonging to the network

• Implemented with Open vSwitch and the VXLAN overlay network
 • Encapsulate Ethernet packets in UDP packets

• Optional L3 services
 • Automatically assigns IP to VMs
 • Provides DHCP/DNS services
 • NAT-based routing to the host cluster network
 • Reverse NAT to VM ports (SSH access)

• Not performance optimized but good enough for most use-cases
 • 5-10 Gbit/s between two remote VMs on our hardware
Virtual Infiniband networks

- **Create an isolated Infiniband partition per virtual cluster**
 - Makes use of Infiniband SR-IOV
 - Multiplex a physical device into multiple virtual functions (VFs)
 - VFIO is used to isolate the device from the host
 - Applies an IOMMU
 - OpenSM is reconfigured dynamically to restrict VFs to a specific partition
 - Equivalent to a VLAN
 - Infiniband VFs are attached to VMs belonging to the network

- **Near native performance**
Virtual clusters

Mounting host filesystems in VMs

- Exported by Qemu with the 9P protocol
 - Filesystem is accessed with privileges of the job owner
 - Fairly slow for metadata and small accesses

- A more efficient replacement is being developed by RedHat
 - Virtio-fs
 - Used in the Kata containers project
Docker VM allocation

- **Similar to the docker-machine tool**
 - Leverage the VM allocation support of pcocc
- **Setup a Docker environment with a single command**
 - pcocc docker alloc
 - Allocate a VM running a docker daemon
 - Hosts filesystems are available
 - Setup environment variables to redirect Docker API calls to the VM
 - Use the docker CLI as if the daemon was running locally
- **Support for Docker-based workflows**
 - Build containers with Dockerfiles
 - Use tools like docker-compose
Run unprivileged containers

• **Restriction: keep the same user id within the container**
 • Similar to other HPC-oriented container runtimes
 • `pcocc run -I ctr-image [cmd]`
 • Works with OCI images
 • Extracts the image once on first use
 • A cache is used for next runs

• **Namespaces**
 • Based on the bubblewrap tool
 • Used in Flatpak, a package management tool using container features
 • Uses unprivileged user namespaces if enabled
 • Can run as a setuid binary otherwise
Interface containers with host software/hardware

- Ideally, containers should be self-contained and deployable everywhere
- Unfortunately, some HPC features require tight integration to the host
 - High performance interconnect libraries
 - MPI libraries / launchers and related tuning
 - GPU runtime (CUDA)
- Ability to define modules which inject files and/or environment variables
 - Specified when running a container with the -M flag
 - Restricted to “sufficiently compatible” containers (glibc ...)
- Example modules
 - Nvidia module
 - Provides access to the host Nvidia runtime
 - OpenMPI modules
 - Injects recommended OpenMPI libraries and configurations
 - WI4MPI module
 - MPI wrapper interface
 - Translates e.g, from an IntelMPI linked application to an OpenMPI library
Planned improvements

- Add virtual network support for containers
 - A slurm plugin sets up a “pod” during prolog for each allocation
 - Network namespace with requested network interfaces
 - Ability to select other namespaces to unshare from the parent namespace
 - Runs user tasks using these namespaces
 - User processes setup their own mount namespaces as today

- Allowing multiple uids in containers
 - User namespaces with subuid/subgid
 - Maps to dedicated uid ranges on the parent namespace
 - Integration to our compute centers must be evaluated
 - Allocations of UID ranges with LDAP based accounts
 - Possible impacts on filesystems, accounting, node management etc
 - Support for full system containers, building images...
Example use cases

Large scale reproducers / debugging

- **Example: reproducers for Lustre issues**
 - Instanciate Lustre servers and client VMs
 - Reproduce issues which only happens at large scale and crash the Lustre servers
 - Issue with > 100 client nodes required to reproduce the problem
 - See Dominique Martinet presentation at Lustre Admins and Devs Workshop 2016
Example use cases

Development or evaluation of system level software

• **Easy to deploy test-beds**
 • No need for special privileges

• **Several internships every year**
 • Examples:
 • Large scale configuration deployment with Puppet
 • Development and evaluation of a diskless node management solution
 • Design of an elasticsearch based solution to process HPC logs

• **Teaching for ENSIEE engineering school**
 • HPC oriented system administration classes
 • Leverage Slurm cluster for the labs
Example use cases

Jenkins-based continuous integration environment

- **Provide users with their own Jenkins instance**
 - Set up and managed by our team with the Lurch tool
 - Per-user or per-group

- **Jenkins worker accesses the HPC cluster**
 - Runs as the Jenkins instance owner and is able to submit SLURM jobs
 - Sets up custom execution environments thanks to pcocc

- **Quickly run large test suites using many parallel nodes**
 - Ex: rebuild our HPC oriented Linux distribution

- **Perform validation on representative hardware**
 - Large number of cores
 - Infiniband interconnect
Thank you!

Questions?