

EST.1943

Los Alamos National Laboratory LA-UR-19-29207

Monitoring Slurm with a Splunk App

LANL Workload Management Team

Nicole Dobson

18 Sept 2019

The need for a better monitoring tool...

- Maintain functionality
- Multiple systems
- Response time

- Portable and easy for multiple systems
- Quick and easy detection
- Faster diagnosis

	• •••	• •••	
••••	••••	••••	• • •
• •••			

Using the command line

Say we just want to monitor utilization:

```
-bash-4.2$ sreport -t percent cluster util start=00:00:00
Cluster Utilization 2019-09-11T00:00:00 - 2019-09-11T00:59:59
Usage reported in Percentage of Total
 Cluster Allocate
                      Down PLND Dow Idle Reserved Reported
  badger
          (94.97%)
                     0.62% 0.00% 3.94% 0.47% 100.00%
-bash-4.2$
-bash-4.2$ sinfo --partition any
PARTITION AVAIL TIMELIMIT NODES
                                  STATE NODELIST
                 infinite
                               4 drain* ba[373,429,607,647]
any
            up
                infinite
                                 drain ba374
any
            up
                infinite
                                  resv ba[003-006,053,104,613]
any
            up
                 infinite
                             642
                                  alloc ba[001,007-052,054-103,105-154,156-335,
any
            up
48-6601
                 infinite
                                   idle ba[002,155,336,407-409]
any
            uр
```


Using Splunk

We can expand on that single number to a visual representation that updates in real time

Now we can easily identify unexpected utilization metrics without having to constantly run a command and verify that the numbers it returns are within normal bounds

Why we use Splunk

What Splunk does:

- Ingests log messages and other log-like data
- Command box functions similarly to grep
- Allows visuals to be created and auto-updated all from that one command box
- Can create alerts on data and trends

Benefits:

- No need to scp data off of clusters to monitoring server in order to interpret it
- Splunk command box allows for grepping through logs same as command line
- One command to ingest data and create visual, not having to keep track of and maintain multiple scripts
- No need to set up cron job to look for and alert on conditions of interest, can alert on trends

All Clusters Monitoring Dashboard

Single Cluster Dashboard

Top Non-Zero E	Exit Code Job	s																
last 48 hours																		
cluster \$	exit_code \$	end_state \$	user_name \$	jobname \$;		wallclo	ock_limit (h	hrs) \$	approx_d	uration (hrs)	() \$	perc_wall_clock_u	used \$	NodeCou	unt \$	count \$	severity \$
grizzly	9:0	FAILED	user_1	job_name	∍_A				16		0	0.0	0.0%			256	2	512
grizzly	9:0	FAILED	user_2	job_name	∍_B				1.0		0	0.0	0.0%			500	1	500
trinitite-knl	0:15	FAILED	user_3	job_name	∍_C				1.0		0	0.5	50%			90	3	270
grizzly	6:0	FAILED	user_1	job_name	э_A				16			3	19%			128	2	256
snow	1:0	FAILED	user_4	job_name	∌_D				2.0			1	50%			2	121	242
grizzly	9:0	FAILED	user_5	job_name	∍_E				7.0			2	29%			114	2	228
grizzly	9:0	FAILED	user_6	job_name	∍_F				16			1	6.3%			50	4	200
grizzly	9:0	FAILED	user_6	job_name	<u>∍</u> _F				16			3	19%			50	4	200
grizzly	59:0	FAILED	user_7	job_name)_G				3.0			3	100%			100	2	200
Average Wall C	Clock Usage Pe	Percentage by Us		0.3 0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8 0.85	0.9	0.95	1		user list
Number of Jobs 3,000 ——————————————————————————————————	s Submitted Tr	Trend on badger	by Hour and I	Day of Wee	k (last 3 m	nonths)		<u></u>	<u> </u>				A				_	— Friday — Monday — Saturday

Analysis Panels and Graphs

hour

1,000

— Sunday

ThursdayTuesdayWednesday

Log Messages and Data Sources

- slurmctld log messages
 - Reservation start and end
 - slurmctld running
- Custom made cron script
 - Slurm commands: sinfo, sdiag, squeue, scontrol ...
 - Easy to maintain and add to, same across all clusters
- Job completion data
 - Epilog script ran at end of job reporting on data items
- Some supporting logs from other systems or software

Improved our maintenance procedures

Fine-tuned our policies

Quickly get a sense of health, normal pattern of use, and appropriate heartbeats

Questions?

Over 70 years at the forefront of supercomputing

Over 70 years at the forefront of supercomputing