
Aditi Gaur
NERSC

Job Container
plugin for managing

node local
namespaces

Slurm user group 2019, Utah

Job container Plugin- Use Case

• NERSC Cori System extended
• GPU Racks- Each GPU node consists of local SSD’s
• Big Memory Nodes- For bioinformatics pipelines, 20 nodes, 1.5

TB
• Users want private scratch space
• A private scratch space, configurable, and on-demand
• Each job should allocate a local /tmp and private /dev/shm to the job

• Clean up /tmp on teardown
• Make sure shared jobs cannot interfere with each others

allocations

Job container Vs Spank

• Spank provides pluggable routines before, during and after job launch, and the same for
teardown. But implementing functionality in spank means other spank plugins can only see the
namespace created if they run after the namespace spank plugin.

• Job container creation runs before all spank prologs, and teardown happens after all spank
epilogs. Hence spank plugins are attached to the namespace created by job container plugin

• A corresponding functionality in spank, would have to rely on ordering of spank plugins, if other
spank plugins want to use the namespace or expect to be in namespace.

• Job container plugin provides the required wire up for adding other namespaces as well. This
meets the need of a generalized infrastructure of handling namespaces in slurm

• More maintainable than spank

Concepts- Linux Namespaces

• Encapsulate a global system resource
• Processes inside, have an isolated view of the resource
• Processes view resource as exclusive

• 7 kinds of Namespaces-
• Mount , CLONE_NEWNS→ similar to chroot jails but more flexible and secure
• PID , CLONE_NEWPID→ isolates the process table
• UTS, CLONE_NEWUTS → isolates nodename and domainame
• IPC , CLONE_NEWIPC→ isolates IPC resources
• Network , CLONE_NEWNET → isolates networking resources such as IP tables, IP

 addresses

• User, CLONE_NEWUSER → latest addition to the kernel, Isolates UID and GID
• Cgroups, CLONE_NEWCGROUPS

Concepts -Linux Namespaces (2)

• The proc filesystem

$ ls -l /proc/self/ns
 total 0
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 cgroup -> cgroup:[4026531835]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 ipc -> ipc:[4026531839]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 mnt -> mnt:[4026531840]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 net -> net:[4026531969]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 pid -> pid:[4026531836]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 pid_for_children -> pid:[4026531834]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 user -> user:[4026531837]
 lrwxrwxrwx. 1 mtk mtk 0 Apr 28 12:46 uts -> uts:[4026531838]

• If 2 process have same namespace- the symbolic links would point to same inode

Concepts- Linux Namespaces (3)

System calls -
• Clone

• Forks a new process, isolates the requested resources in the child process from the parent

/* GLIBC wrapper is different from clone system call*/

• Unshare
• Does not call fork, but stops sharing the requested resource from parent. Future events on

resource are only visible to the calling process.

/* Fork + unshare, provides functionality similar to clone().
Fork does internally call clone but without namespace flags*/

• setns
• Enter a namespace that is alive
• Requires an open fd to the proc filesystem

Concepts- Linux Namespaces (3)

• A word about using Clone vs Unshare
• Clone creates a new process, and applies namespace semantics to it.
• Unshare “un shares” the requested namespace of the calling process from the parent

• It “leaves” the namespace of the parent.
• Does not fork new processs
• Its easier to create a persistent namespace using fork + unshare

/* Create child that has its own UTS
namespace, child commences execution in
childFunc() */

pid = clone(childFunc, stackTop,
CLONE_NEWUTS | SIGCHLD, argv[1]);

…
}

Static int childFunc(void *arg) {
/* cloned child in UTS namespace

starts here */
… }

cpid = fork();

If (cpid ==0) {
unshare(CLONE_NEWNS|CLONE_NEWUSER;
/*child has left mount and user

namespace*/
…

}

/*parent*/

continue;

Creating Persistent Namespace

• Namespaces created can only be kept alive by keeping a process alive inside it.

• To avoid unnecessary bottleneck- We use bind mounting to keep namespace alive

• The bind mount keeps the namespace alive because- We can open an fd to
/proc/$PID/ns/mnt , to enter the namespace in setns() call

• This makes is possible to have a filesystem of open namespaces

Creating persistent namespace

Example code:

/* parent*/

cpid = fork();

if (pid == 0) {

/*child*/

unshare(CLONE_NEWNS);

… /* mechanism to wait while parent bind mounts*/

}

/*parent*/

mount(“/proc/cpid/ns/mnt”, path, NULL, MS_BIND, NULL);

…

}

Job Container - API

• In slurm.conf use ‘JobContainerType’ to use job container

• Currently 2 job container plugins exist
• cncu - cray only plugin (compute node clean up)
• none

• Job Container Plugin initialized at the start of slurm Daemons
• container_p_restore() → global initialization can be put here

• container_p_create() → create new container
• container_p_delete() → called after spank epilogs, destroy the container
• container_p_join() → Called before slurmstepd forks any tasks for the job, add pid to the

job container

JobContainerType=job_container/tmpfs

Job container - Namespace.conf

• Namespace.conf provides ability to configure options
• Currently supports

• Basepath = Path that job container plugin should

 Use for constructing creating job’s

 /tmp.

• NodeName = For each NodeName, can have a different

 configuration

• InitScript = optional initscript, for running any

initialization

Namespace.conf Example

How we use at NERSC:

NodeName=cgpu[01-18] BasePath=/var/opt/nersc/nvme
NodeName=exvivo[001-020] BasePath=/var/opt/nersc/nvme
NodeName=cori[01-08,10-21] BasePath=/var/opt/cray/persistent

Possible Use Cases & Future work

• Interesting use case to support XFS (and/or BTRFS) quotas. When user
gets a namespace assigned, they also get assigned relevant disk space,
which is private scratch for their job.

• User can get added into multiple namespaces. One example would be-
users only get to see filesystems they have requested access to, with
different permissions such as read only that can be controlled via
mounting.

• Easy wire up to support more namespaces than just mount. Maybe
Cgroups.

• This provides a better way of implementing PID namespaces
• Plans to upstream for 20.02

Job Container API - Job Launch

Slurmd starts

container_p_restore()

container_p_create()Job
arrives

Slurmstepd prolog

Slurmstepd extern

… tasks ..

container_p_join()

container_p_join()

container_p_join()

fork()

fork()

fork()

Job Container API: Teardown

Slurmd

Slurmstepd epilog

container_g_delete()

Tasks finish …

slurmd
shutdown

container_g_fini()

Job Container/tmpfs - Job Launch

Slurmd starts

container_p_restore()

container_p_create()Job
arrives

Slurmstepd prolog

Slurmstepd extern

… tasks ..

container_p_join()

container_p_join()

container_p_join()

fork()

fork()

fork()

/* container_p_restore, is used for
creating base mounts. These mounts
persist until slurmd lifetime */

/* container_p_create() is used for creating the namespace, job is
to reside in. All mounts are created for the job in this call. We
fork and unshare, and bind mount the namespace to a persistent
area*/

/* container_p_join() calls setns
using the open fd of the bind
mount created above. This makes
the process join the namespace,
and see namespace specific
resources */

Job Container/tmpfs: Teardown

Slurmd

Slurmstepd epilog

container_p_delete()

Tasks finish …

slurmd
shutdown

container_p_fini()

/* container_p_delete destroys the container
by unmounting the bind mount. It also
deletes all the files created by the user,
in the scratch space */

/* container_p_fini cleans up
the base mounts created in
container_p_restore() */

Job Container/tmpfs

Multiple jobs on a Node:

root@linux_vb:/usr/local/etc# findmnt
TARGET SOURCE FSTYPE OPTIONS

├─/storage /dev/sdb xfs rw,relatime,attr2,inode64,usrquota
│ └─/storage /dev/sdb xfs rw,relatime,attr2,inode64,usrquota
│ ├─/storage/2/.ns nsfs[mnt:[4026532307]] nsfs rw
│ ├─/storage/3/.ns nsfs[mnt:[4026532313]] nsfs rw
│ └─/storage/4/.ns nsfs[mnt:[4026532314]] nsfs rw

Job Container/tmpfs

What jobs see (inside namespace):

parallels@linux_vb:~$ findmnt

└─/tmp /dev/sdb[/2/.2] xfs rw,relatime,attr2,inode64,usrquota

Conclusion

• Job container provides a more mature wire-up to support namespaces in slurm than spank

• Provides, better encapsulation for jobs

• Namespace.conf provides configurable way to support the job container API
• Additional options in namespace.conf can easily be added to support more functionality

Thank You

Job Container API - Job Startup

→ slurmd starts

→ container_g_init() /* this function gets called in many different contexts*/

→ container_g_restore() /* useful for node-level initialization, only slurmd context*/

→ job_arrives (_rpc_prolog())

 → container_g_create() /* Now we are doing job specific initialization*/

 → creates slurmstepd with option to only run prolog, slurmstepd is also added to the container via container_g_join()

 → container_g_init() /*stepd context here, for spank prolog */

 → spank prolog for all spanks

→ on each fork() /* before execve */

→ container_g_join() /* add the spank pid to the container*/

→ container_g_add_cont() /*add proctrack container to job
container*/

Back to slurmd ←

 → _forkandexecslurmstepd() to run job tasks

→ container_g_init() /* stepd context here */

/* all slurm stepd forks call container_g_join and container_g_add_cont*/

Job Container API - Job teardown

Job_ends (slurmstepd)

→ call spank epilogs

container_g_delete() /*remove the job container and de-allocate any memory

Perform any node-level teardown

NOTE: This runs AFTER spank epilogs*/

Back to slurmd ← slurmstepd_exits

When slurmd exits:

→ job_container_fini() /* slurmd context, now remove any global

Initializations */

Job Container - TMPFS - Job Startup

slurmd starts

container_g_init() /*No - op*/

container_g_restore() /*Create Base Namespace */

Job_arrives (_rpc_prolog())

 → container_g_create() /* create project level directories, set permissions, unshare
 mount namespace, mount a private /tmp, /dev/shm inside it.

 Make namespace persistent by bind mounting*/

/* All forks after this call container_g_join*/

 → creates slurmstepd with option to only run prolog

 → container_g_init() /*no - op for our plugin */

 → spank prolog for all spanks

→ on each fork() /* before execve */

→ container_g_join() /*nsenter() into our namespace created*/

Back to slurmd ←

 → _forkandexecslurmstepd() to run job tasks. Every fork before execve will call

→ container_g_join() /* nsenter all job processes */

Job Container TMPFS - Job teardown

Job_ends (slurmstepd)

→ call spank epilogs

container_g_delete() /* teardown the namespace

Go into the directory, and clean up all the files.

NOTE: This runs AFTER spank epilogs*/

Back to slurmd ← slurmstepd_exits

When slurmd exits:

→ job_container_fini() /* teardown base namespace here */

