
Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua and
slurmscriptd

Marshall Garey
SchedMD

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Slurm User Group Meeting 2021

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Agenda

All times are US Mountain Daylight (UTC-6)

Time Speaker Title

9:00 - 9:50 Jason Booth Field Notes 5: From The Frontlines of Slurm Support

10:00 - 10:25 Nate Rini REST API and also Containers

10:30 - 10:50 Marshall Garey burst_buffer/lua and slurmscriptd

11:00 - 11:25 Nick Ihli Slurm in the Clouds

11:30 - 11:50 Tim Wickberg Slurm 21.08 and Beyond

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Welcome

● Five separate presentations, five separate streams
● Presentations will remain available for at least two weeks after SLUG'21 concludes
● Presentations are available through the SchedMD Slurm YouTube channel

○ https://youtube.com/c/schedmdslurm
● Or through direct links from the agenda

○ https://slurm.schedmd.com/slurm_ug_agenda.html

https://schedmd.com
https://youtube.com/c/schedmdslurm
https://slurm.schedmd.com/slurm_ug_agenda.html

Copyright 2021 SchedMD LLC
https://schedmd.com

Asking questions

● Feel free to ask questions throughout through YouTube's chat
● Chat is moderated by SchedMD staff

○ Tim McMullan, Ben Roberts, and Tim Wickberg
○ Also identified by the little wrench symbol next to their name

● Questions will be relayed to the presenter by the moderators
○ Some may be deferred to the end if they cannot be relayed in a timely fashion
○ Or some may be answered by the moderators in chat directly

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua and
slurmscriptd

Marshall Garey
SchedMD

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Introduction to burst buffer

● Burst buffers are intermediate storage between the slow
long-term storage and the compute nodes

● A way to move data from slow storage to faster storage
(closer to the compute node) while a job is pending

● Increase job performance
● Avoid moving data during valuable compute time

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Slurm burst_buffer/datawarp plugin

● slurmctld executes Cray's datawarp script at different points in
a job's lifecycle:
○ Job submission
○ Job pending
○ Job allocated, not running yet
○ Job finished running, in completing state
○ Job totally complete

● Slurm does not stage data; Cray's datawarp script
does the hard work

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

New burst_buffer/lua plugin

● Motivation: provide a generic burst buffer plugin
● Similar to datawarp plugin

○ Provide hooks to a script named "burst_buffer.lua" written by a system
administrator

○ Call burst_buffer.lua at specific points in a job's life cycle
● The script can do anything

○ "Burst buffer" is a misnomer
○ Asynchronous calls to a generic script is the interesting part

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

When is burst_buffer.lua called?

Job state burst_buffer.lua function

Job submission slurm_bb_job_process

Job pending slurm_bb_data_in

Job allocated resources, not running yet slurm_bb_pre_run

Job finished, completing state slurm_bb_data_out

Job completed slurm_bb_teardown

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Potential uses for burst_buffer/lua

● Move data from slow storage to faster storage closer to the
compute nodes

● Move data from on-site storage to the cloud
○ Don't pay for the cloud nodes until the data is in the cloud

● Anything that the system administrator wants

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua - How to use

● Job requests using burst_buffer/lua
○ Job script contains "#BB_LUA"

!/bin/bash
#SBATCH -t 1
#SBATCH -q speedy
#BB_LUA
script
script

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua - How to use

● Job requests using burst_buffer/lua
○ Or command-line option

■
○ System administrator defines and enforces additional syntax with

burst_buffer.lua
● System administrator implements burst_buffer.lua

○ Template provided with Slurm: burst_buffer.lua.example

$ sbatch --bb=”#BB_LUA”

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

$ cat bb_example.batch
#BB_LUA stage_in source="/home/marshall/hello.txt" destination="/tmp/job_in"
#BB_LUA stage_out source="/tmp/job_out" destination="/home/marshall/job_out"
echo "my job $SLURM_JOB_ID output this" > /tmp/job_out

$ sbatch -Dtmp burstbufferjobs/bb_example.batch
Submitted batch job 170270
$ cat /tmp/job_in /tmp/job_out job_out
hello
my job 170270 output this
my job 170270 output this

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function slurm_bb_job_process(job_script)
 -- Variables are initialized to nil if no value given
 local rc
 -- Discard all return values except rc
 rc = _parse_job_script(job_script, true, true)
 if (rc == slurm.ERROR) then
 return slurm.ERROR, "Burst buffer staging directive not given or invalid"
 end
 return slurm.SUCCESS
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function slurm_bb_data_in(job_id, job_script)
 return _stage(job_script, "stage_in")
end

function slurm_bb_data_out(job_id, job_script)
 return _stage(job_script, "stage_out")
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function _stage(job_script, stage)
 local rc, src, dest, tmp1, tmp2
 if (stage == "stage_in") then
 rc, src, dest, tmp1, tmp2 = _parse_job_script(job_script, true, false)
 else -- assume stage_out
 rc, tmp1, tmp2, src, dest = _parse_job_script(job_script, false, true)
 end
 if (rc == slurm.ERROR) then
 return slurm.SUCCESS -- Job doesn't want this stage, return success
 end
 return _stage_file(src, dest)
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function _parse_job_script(job_script, stage_in, stage_out)
 local rc, in_src, in_dest, out_src, out_dest
 local rc1, rc2 = slurm.SUCCESS, slurm.SUCCESS

 io.input(job_script)
 local contents = io.read("*all")
 io.close()
 if (stage_in) then
 rc1, in_src, in_dest = _get_stage_src_dest(contents, "#BB_LUA stage_in")
 end
 if (stage_out) then
 rc2, out_src, out_dest = _get_stage_src_dest(contents, "#BB_LUA stage_out")
 end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function _parse_job_script(job_script, stage_in, stage_out)
 -- _parse_job_script continued
 if ((rc1 == slurm.ERROR) and (rc2 == slurm.ERROR)) then
 rc = slurm.ERROR
 else
 rc = slurm.SUCCESS
 end
 return rc, in_src, in_dest, out_src, out_dest
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function _get_stage_src_dest(contents, stage_str)
 local src, dest, inx_start, inx_end
 -- Lazy regex; require path between quotes and do not allow spaces
 inx_start, inx_end, src, dest = string.find(contents, stage_str .. " source=(\"%S+\")
destination=(\"%S+\")")
 if (inx_start == nil) then
 return slurm.ERROR, nil, nil
 end
 slurm.log_info("stage=%s: src=%s, dest=%s", stage_str, src, dest)
 return slurm.SUCCESS, src, dest
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua - Example

function _stage_file(src, dest)
 local rc, str, num, ret_str
 if ((src == nil) or (dest == nil)) then
 return slurm.ERROR, "src or dest are nil"
 end
 cmd = "cp " .. src .. " " .. dest
 slurm.log_info("Running %s", cmd)
 rc, str, num = os.execute(cmd)
 if (rc == nil) then
 ret_str = cmd .. " failed; " .. str .. ":" .. num
 return slurm.ERROR, ret_str
 end
 return slurm.SUCCESS
end

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer.lua called in two ways

● Some functions are called synchronously
○ Called directly from slurmctld is faster than fork()'ing a new process
○ Cannot be killed, must run quickly!
○ Example: slurm_bb_job_process - called on job submission while

slurmctld holds locks
● Some functions are called asynchronously

○ Slurm fork()'s a new process, then calls burst_buffer.lua
○ Can be killed (timeout, job cancel, slurmctld shutdown)
○ Examples: slurm_bb_data_in, slurm_bb_data_out

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

burst_buffer/lua - Documentation

● https://slurm.schedmd.com/burst_buffer.html
● https://slurm.schedmd.com/burst_buffer.conf.html
● https://slurm.schedmd.com/slurm.conf.html#OPT_BurstBuffer

Type

https://schedmd.com
https://slurm.schedmd.com/burst_buffer.html
https://slurm.schedmd.com/burst_buffer.conf.html
https://slurm.schedmd.com/slurm.conf.html#OPT_BurstBufferType
https://slurm.schedmd.com/slurm.conf.html#OPT_BurstBufferType

Copyright 2021 SchedMD LLC
https://schedmd.com

slurmscriptd

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Problem: fork() is slow

Current functionality and Problem
● slurmctld calls fork()/exec() to run many scripts

○ Examples: {Prolog,Epilog}Slurmctld, burst_buffer/datawarp
● Test with PrologSlurmctld and EpilogSlurmctld:

○ sbatch --array=1-10000 --wrap='srun hostname'
○ Time from earliest submit time to last end time
○ slurmctld with minimal memory footprint: 4 min 56 sec
○ slurmctld with 5 GB memory footprint: 18 min 5 sec

● Solution: use a different "daemon" to run scripts

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

How slurmscriptd works - startup

slurmctld slurmscriptd
Calls fork() Initializes from child process

Loads State
Allocates job

Tells slurmscriptd to run
PrologSlurmctld for job Runs PrologSlurmctld

Tells slurmctld that PrologSlurmctld
finished for job

PrologSlurmctld finished, starts job

Shut down for any reason Kills any running scripts,
then shuts down

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

How slurmscriptd works - run scripts

slurmctld slurmscriptd
Calls fork() Initializes from child process

Loads State
Allocates job

Tells slurmscriptd to run
PrologSlurmctld for job Runs PrologSlurmctld

Tells slurmctld that PrologSlurmctld
finished for job

PrologSlurmctld finished, starts job

Shut down for any reason Kills any running scripts,
then shuts down

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

How slurmscriptd works - shutdown

slurmctld slurmscriptd
Calls fork() Initializes from child process

Loads State
Allocates job

Tells slurmscriptd to run
PrologSlurmctld for job Runs PrologSlurmctld

Tells slurmctld that PrologSlurmctld
finished for job

PrologSlurmctld finished, starts job

Shut down for any reason Kills any running scripts,
then shuts down

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

slurmscriptd Improves Performance

● Run 10,000 jobs with PrologSlurmctld and EpilogSlurmctld
● slurmctld with 5 GB memory footprint

○ Slurm <= 20.11 (without slurmscriptd): 18 min 5 sec
○ Slurm 21.08 (with slurmscriptd): 4 min 23 sec

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

slurmscriptd

● Currently runs PrologSlurmctld, EpilogSlurmctld, and
asynchronous calls to burst_buffer.lua

● Potential future work: remove most or all fork() calls from
slurmctld
○ MailProg
○ SuspendProgram/ResumeProgram
○ strigger programs

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Questions?

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

Next Session

● The next presentation is by Nick Ihli: "Slurm in the Clouds"
● Starts at 11am Mountain Daylight Time (UTC-6)
● And is on a separate YouTube Live stream
● Please see the SchedMD Slurm YouTube channel for links

https://schedmd.com

Copyright 2021 SchedMD LLC
https://schedmd.com

End Of Stream

● Thanks for watching!

https://schedmd.com

