

The Best of Both Worlds: Slurm on Kubernetes

SLUG '23

CoreWeave is a specialized cloud, built for GPU accelerated workloads on top of the industry's fastest and most flexible infrastructure.

One Orchestration Layer To Rule Them All

Bare Metal Containers

Distributed Training Workloads

Inference Workloads

General MicroServices

KNative Serverless Compute

KEDA Auto Scaling

MPI Operator

Argo Workflows

Helm Application Management

+ Thousands of community supported projects

Virtual Servers

KVM / QEMU Hypervisor Workloads

Supports workloads not containerizable

Great for Virtual Desktops and Developer Workstations

Available on all CPU and GPU platforms

Linux and Windows support

Does not support GPUDirect RDMA

Storage

Scalable, Highly Available Network Attached Storage

All-NVMe and HDD Tiers Available

Block Device and Shared Filesystem Volume Types (Supports Multi-Attach)

Interoperable with Containers and Virtual Servers

Up to 1PB Volume Sizes

10MM+IOPS per Volume

Networking

Infiniband GPUDirect RDMA (Bare Metal)

Private & Public IP Ranges

Load Balancer Services (internal & external)

Firewalling via Network Policies

Bare Metal Containers and Virtual Servers in same network domain

Direct Connects and Cloud On-Ramps Available

All resources are adjacent to one another and governed by the same Kubernetes concepts, making orchestration much more manageable.

Datacenter Footprint

225 MW of Power across 15 Datacenters

HGX H100 Supercomputer Instances

- NVIDIA HGX H100 Platform built on Intel Sapphire Rapids platform
- 1:1 Non-Blocking GPUDirect Fabric built rail optimized using NVIDIA InfiniBand NDR HCAs and Quantum-2 Switches
- Standard 8 rail configuration
- Topology supports NVIDIA SHARP in-network collections

For more information: CoreWeave H100 Documentation

Partners & Customers

- Investor and strategic partner
- Executive level collaboration and planning
- Elite North American partner for cloud services

Top Al companies and labs

- Operations and platform providers
- Expanding compliance in 2024 for government related contracts

Why Slurm On Kubernetes?

Seamless Experience

Support for both **burst** and **batch** workloads on the same central platform.

- CoreWeave's core API and orchestration is Kubernetes
- Separating orchestration entirely means two separate pools of compute to maintain and operate
- Without Slurm, customers lose out on industry best solutions for HPC

SUNK Features

Configuration & Deployment

- Deployable in suite of helm chart related tools including popular gitops workflows
- Easy tracking & configuration of prolog and epilog scripts
- Support for s6 scripts and services
- Configurable authentication schemes including Ldap through companion OpenLdap helm chart or third party solution (Authentik, GAuth, etc.)

Kubernetes Integration

- Inherits the core Kubernetes features
 - HA of control plane services
 - Dynamic node scaling
 - Resource management with request and limits
 - Shared filesystem via
 Persistent Volume Claim
 resources
- K8s scheduler for scheduling native kubernetes workloads via Slurm scheduler
 - Serverless/Bursty workloads

State Management

- Dynamic nodes with two way syncing of state between k8s and slurm
- Automatic topology generation
- Support for Pyxis container execution
- GRES support and auto-identification

SUNK Implementation Overview

Services containerized in Kubernetes

Services containerized in Kubernetes

Slurm components as **Pods**

- Controller
- Accounting
- Rest API
- Slurm DB
- Login Nodes

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

- Single source of truth mounted across all components
- Slurm config
- Topology
- Prolog/Epilog Scripts

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

Nodesets maintaining compute

- A CRD for scheduling slurmd containers on Kubernetes nodes
- Tracks status of the compute nodes within slurm

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

Nodesets maintaining compute

Slurm Syncer reconciling state

- Sync the state of Kubernetes nodes into slurm and vice-versa
- Interact with Slurm's RESTAPI

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

Nodesets maintaining compute

Slurm Syncer reconciling state

Staying consistent with the **Operators**

 Reconciles node changes from the Slurm and Kubernetes sides

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

Nodesets maintaining compute

Slurm Syncer reconciling state

Staying consistent with the **Operators**

Schedule from both sides

 Allows scheduling of Kubernetes workloads on shared pool of compute with Slurm

SUNK Implementation Overview

Services containerized in Kubernetes

Slurm components as **Pods**

Configuration as **ConfigMaps** and **Secrets**

Nodesets maintaining compute

Slurm Syncer reconciling state

Staying consistent with the **Operators**

Schedule from both sides

Expose prometheus **Metrics**

Nodesets

- A cross between daemonset and statefulset
- Kubernetes Status fields based on state in Slurm, node status, and pod affinity
- Schedules pods running slurmd taking into account:
 - Node affinity
 - Tenancy of other workloads
 - Kubernetes and Slurm node conditions
- Protected rolling updates and scale up/down considering Drain/Active conditions

NAME	DESIRED	FEASIBLE	CURRENT	READY	UP-TO-DATE	RUNNING	DRAIN
slurm-a40	10	10	10	8	8	8	2
slurm-h100	32	30	30	30	30	30	0

Syncer

Leveraging Slurm's REST API, the syncer keeps the state of compute consistent between kubernetes and slurm

Reconciles pod **annotations**, **labels**, and **conditions** to match drain and running states in Slurm

Pod conditions such as **drained/cordoned** nodes originating **from K8s** get **pushed to slurm**

Efficiently **caches the state from slurm** to avoid overwhelming requests

Scheduler

Controller acting as a **kubernetes scheduler**

Allows compute resources associated with a Slurm Cluster to be **allocated to k8s workloads dynamically**

Pods schedule according to node assignments matching Slurm placeholder jobs scheduled from within Slurm

Dynamically switches compute between training and inference workloads

SUNK in Practice

Declarative management with **Helm**

Compatible with GitOps pattern Ex: syncing with **ArgoCD**

Slurm Prometheus Metrics exporter & **Grafana Dashboards**

Phalanx **HPC verification** workloads to assure health of cluster resources

Inflection Al's ultra-performant cluster smashes **MLPerf record**

In a joint submission with NVIDIA, CoreWeave delivered record-breaking performance results on the MLPerf™ benchmark in June 2023.

<11 minutes

to train GPT-3 training benchmark on a commercially available cluster

+3.500

NVIDIA Tensor Core H100 GPUs used

29x faster than the next best competitor

4x bigger than the next best competitor

Key Contributors

Peter Salanki

Andrew Senetar

We're Hiring!

https://www.coreweave.com/careers

Coming Soon

https://github.com/coreweave/sunk

Questions?

Slurm On Kubernetes to be open sourced in 2024

Looking for future partners & maintainers, reach out to sunk@coreweave.com if interested

Want to try it out on CoreWeave? Reach out to sales@coreweave.com

Thank You

