
Chansup Byun, William Arcand, David Bestor, Bill Bergeron, Daniel Burrill, Vijay Gadepally, Michael Houle,
Matthew Hubbell, Hayden Jananthan, Michael Jones, Anna Klein, Peter Michaleas, Lauren Milechin, Julie Mullen,
Guillermo Morales, Andrew Prout, Albert Reuther, Antonio Rosa, Siddharth Samsi, Charles Yee, Jeremy Kepner

Massachusetts Institute of Technology

Optimizing Diverse Workloads and
System Resource Usage with Slurm

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force. © 2023 Massachusetts Institute of Technology. Delivered to the U.S.
Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as

detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Slide - 2

• Overview on LLSC
• Innovative allocation and scheduling technologies

– LLSC developed tools
– Slurm

• Performance
• Maximization of Resource Utilization
• Other Enhancements
• Summary

Agenda

Slide - 3 1Interactive Grid Computing at Lincoln Laboratory, Bliss et al., LL Journal, 2006
2Scalability! But at what COST?, McSherry et al., HotOS XV, 2015

Lincoln Laboratory Supercomputing Center
(LLSC) Role

Mission
Areas

LLSC develops & deploys unique, energy-efficient supercomputing that provides cross-mission
– Data centers, hardware, software, user support, and pioneering research
– 100x more productive than standard supercomputing1

– 100x more performance than standard cloud2

OSINT

<html>

C2 Ground Space CyberMaritime AirHUMINTWeather

Vast Data
&

Computation

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Air, Missile, and
Maritime Defense

Technology
Homeland

Protection/Bio
Air Traffic

Control
Communication

Systems

Advanced
Technology

Space
Systems and
Technology

ISR Systems
and Technology Tactical Systems

Cyber
Security

Engineering

Slide - 4

TX-GAIA: Green AI Accelerator
- World Leader in Interactive AI Supercomputing -

*Based on 2020 Top500.org
AI Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

• Significant increase in computing power for
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Largest AI Research System at a University

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 5.2 Petaflops (#57 in World*)

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops (#17 in World*)

Network Link Intel OmniPath, 25 GB/s

Low Carbon
Emission

Slide - 5

Interactive Supercomputing

• Desktop Computing
– CPU-time <20 minutes

• Classic Supercomputing
– Wall-clock time >3 hours

• Interactive Supercomputing
– Between desktop and classic

supercomputing
– Shortens the “time to insight”
– Ten development turns/day instead

of one turn/week

1 10 100 1000 10000 100K

To
ta

l J
ob

 d
ur

at
io

n
(s

ec
on

ds
)

.0
1

1

10

0

 1
00

00

 1
0M Classic Supercomputing

Desktop
Computing

In
te

ra
ct

iv
e

Su
pe

rc
om

pu
tin

g

Cores used by Job

Slide - 6

Large and Growing Need for Supercomputing
- requires world-class research to optimize diverse applications on complex hardware -

• Challenge: maximizing the efficiency of thousands of users distinct software
• Approach: LLSC developed innovative programming, allocation, and scheduling technologies

pPython
Parallel Python

Hierarchical
Allocation

Spot
Scheduling

HPC Training via
Serious Games

3D Monitoring &
Management

Slide - 7

• Challenges
– Unintentional usages

• Users often do not know whether their applications are aggressively multi-threaded or not.
• Users often do not know how much memory their jobs require.

– Unexpected failures
• Node failed due to an out-of-memory error by other jobs on the same node
• Take time to identify who caused OOM error

• Mitigation
– Exclusive runtime environment on each node
– Limit the impact by unintentional usage and/or failures to a single user
– Innovative allocation with LLSC developed tools: LLsub, LLMapReduce, pMatlab and

pPython
– Slurm: ExclusiveUser=YES at partition level

Challenges with Shared Systems

Slide - 8

• Traditional allocation
– Cores are slots to be filled with jobs
– 10,000 cores = 10,000 jobs to be

allocated
• No ability to optimize for memory/core

architecture

Innovative Allocation Technologies

processor cores

N levels of cache

m
ai

n
m

em
or

y

User requests: 1 node with 16 processes with 4 threads per process

[1,16,4]
Node mini-
controller

• Hierarchical allocation
– User specifies: nodes, cores, and

threads
– Allocator divides up jobs among

nodes
– Dynamically writes hardware aware

mini-controller on each node to
independently start, monitor, and
stop user processes on node

Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs, Byun et al., IEEE HPEC 2021

Slide - 9

Hierarchical Allocation Performance Benchmark
Workloads Configuration

Configuration Rapid
Tasks

Fast
Tasks

Medium
Tasks

Long
Tasks

Task time, t 1s 5s 30s 60s

Job time per
processor, Tjob 240s 240s 240s 240s

Tasks per
processor, n 240 48 8 4

Reference: Scalable system scheduling for HPC and big data,
https://www.sciencedirect.com/science/article/pii/S0743731517301983

C. Byun et al., "Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs,"
2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2021,

https://www.sciencedirect.com/science/article/pii/S0743731517301983

Slide - 10

Benchmark Size Configuration

Nodes 32 64 128 256 512

Cores per node 64 64 64 64 64

Processors, P
(cores) 2048 4096 8192 16384 32768

• Multi-level scheduling (LLMapReduce MIMO)* creates an array job of P scheduler
tasks

• Hierarchical allocation (LLMapReduce MIMO with the triples mode) creates an array
job of scheduler tasks equivalent to the number of nodes

• Total number of compute tasks (N) varies to maintain the total job time per process
(Tjob) constant

* C. Byun et al., "LLMapReduce: Multi-level map-reduce for high performance data analysis,"
2016 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2016

Slide - 11

• Dramatically
accelerates large
interactive jobs

• Transitioned to
default LLSC
approach

Hierarchical Allocation Performance

64 nodes

standard
hierarchical

128 nodes standard
hierarchical

256 nodes standard
hierarchical

Time saved: 20%

Time saved: 45%

Time saved: 40%

Time saved: 90%

512 nodes standard
hierarchical

Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs, Byun et al., IEEE HPEC 2021

Slide - 12

• Traditional dilemma
– Batch: 90% of nodes used, but user

waits an hour per hour of run time
– Interactive: launches immediately,

but 50% of nodes used
– Same wall-clock performance but

interactive is preferred and more
efficient

Innovative Scheduling

node
utilization

time

batch
(wait an hour for each hour)

time

interactive
(no waiting)

time

interactive + spot
(no waiting & high utilization)

• Best of both worlds
– Spot jobs that can be instantly

preempted by interactive jobs
– Achievable with Hierarchical

Allocation fast preemption

standard hierarchical

preemption time
of a 4096

processor job
(sec)

102

101

100

10-1

80 sec

0.8 sec

100x faster
no impact on
interactive
users

Best of Both Worlds: High Performance Interactive and Batch Launching, Byun et al., IEEE HPEC 2020

Slide - 13

Various Approaches of Spot Job Implementation

Job Lifecycle
Management

Scheduling

Job QueuesJob QueuesJob Queues

Preemption

Job
Assignment

Resource
Allocation
PoliciesQueue

Management
Policies

Job Execution

Pending
Job Reqs

Current
Resource

States

Resource
Allocations

REQUEUE

CANCEL
Cron-job
Script

• Goal
– Low priority spot jobs would not

adversely impact the launch times
of the normal jobs

• Via Resource Allocation Policies
• Vis Queue Management Policies
• Customized Script

– Cron-job script

* Figure adapted from “Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis”, HPEC 2018

*

Slide - 14

Summary of Experiments

Preemption
Approaches

Preemption
Mode Partitions Job Types Job Sizes

Automatic by
scheduler

REQUEUE
Single, Dual

Individual,
Array, Triple-
mode

Small,
Medium, LargeCANCEL

Lua job
submission
script

REQUEUE Dual N/A N/A

Manual REQUEUE Dual
Individual,
Array, Triple-
mode

Large

Cron-job script REQUEUE Dual
Individual,
Array, Triple-
mode

Large

Slide - 15

• System usage at a glance
– LLload displays summary of all jobs running on the system

Monitoring Resource Utilization

$ LLload -g --all
Cluster name: txgreen
Jupyter notebook jobs:

 NodeName Users(GPU)

[J]c-12-15-2: sa12345
[J]c-15-13-3: br67890
[J]c-15-14-4: ma12345
 [J]c-4-1-1: tr67890
 [J]c-5-9-4: ca12345
[J]c-6-15-4: ma67890

Node information for each user:

Username: ab12345, Nodes used: 5
 HOSTNAME CORES - USED = FREE LOAD MEMORY - USED = FREE GPUS - USED = FREE LOAD GPUMEM - USED = FREE
 c-14-10-2 40 - 40 = 0 0.00 384GB - 14GB = 370GB 2 - 2 = 0 0.00 64GB - 0GB = 63GB
 c-14-11-1 40 - 40 = 0 0.00 384GB - 13GB = 371GB 2 - 2 = 0 0.00 64GB - 0GB = 63GB
 c-14-12-1 40 - 40 = 0 0.03 384GB - 14GB = 370GB 2 - 2 = 0 0.00 64GB - 0GB = 63GB
 c-14-12-2 40 - 40 = 0 0.01 384GB - 23GB = 361GB 2 - 2 = 0 0.00 64GB - 8GB = 56GB
 c-14-13-1 40 - 40 = 0 1.08 384GB - 20GB = 364GB 2 - 2 = 0 0.11 64GB - 4GB = 59GB

• Challenge to obtain GPU usage on each node
• Current implementation uses a ssh remote execution

of “nvidia-smi command” on each GPU node
• Ideal if Slurm provides GPU usage information.

Slide - 16

• Before

• After

User Feedback and Coaching

$ LLload –g -u WI12345
Cluster name: txgreen
Username: wi12345, Nodes used: 5
 HOSTNAME CORES - USED = FREE LOAD MEMORY - USED = FREE GPUS - USED = FREE LOAD GPUMEM - USED = FREE
 c-8-16-2 40 - 40 = 0 1.95 384GB - 261GB = 123GB 2 - 2 = 0 0.37 63GB - 3GB = 60GB
 c-13-14-1 40 - 40 = 0 2.33 384GB - 51GB = 333GB 2 - 2 = 0 0.30 63GB - 3GB = 61GB

 c-14-2-1 40 - 40 = 0 2.31 384GB - 51GB = 333GB 2 - 2 = 0 0.37 63GB - 3GB = 61GB
 c-8-7-1 40 - 40 = 0 2.38 384GB - 138GB = 246GB 2 - 2 = 0 0.37 63GB - 3GB = 60GB

 c-7-15-1 40 - 40 = 0 2.56 384GB - 44GB = 340GB 2 - 2 = 0 0.36 63GB - 3GB = 60GB

$ LLload -g -u WI12345
Cluster name: txgreen
Username: wi12345, Nodes used: 3
 HOSTNAME CORES - USED = FREE LOAD MEMORY - USED = FREE GPUS - USED = FREE LOAD GPUMEM - USED = FREE
 c-8-6-1 40 - 20 = 20 1.92 384GB - 47GB = 337GB 2 - 1 = 1 0.24 63GB - 1GB = 62GB
 c-12-3-1 40 - 40 = 0 4.78 384GB - 72GB = 312GB 2 - 2 = 0 0.52 63GB - 2GB = 61GB
 c-8-12-2 40 - 40 = 0 4.53 384GB - 49GB = 335GB 2 - 2 = 0 0.48 63GB - 2GB = 61GB

Slide - 17

• Securing Slurm environment
• Jupyter Notebook Portal Service
• Limiting number of interactive jobs per user

Other Enhancements

Slide - 18

• Cluster-level privacy enforcement
– Controls what type of information is hidden from regular users.
– Users can see only their own jobs, reservations, and usage

• Difficult to find system resource availability
• LLfree provides summary of system usage

Securing Slurm environment

$ LLfree
LLGrid: TXGREEN (running slurm-wlm 23.02.3)
===
Partition | Type | Cores | Nodes | GPUs

normal | Xeon-e5 | 6272 | 224 | N/A

xeon-p8 | Xeon-p8 | 13392 | 279 | N/A

debug-cpu | Xeon-p8 | 528 | 11 | N/A

manycore | Xeon64c | 37888 | 592 | N/A

gaia | Xeon-g6:Volta | 7880 | 197 | 394

debug-gpu | Xeon-g6:Volta | 360 | 9 | 18

• A cron job by a privileged user generate
the system resource usage in every 15
seconds

• The system resource usage is saved in a
file visible by all users

• LLfree read the file and display as shown
here

• Side benefits: reduce the scheduler loads
from users who issue Slurm commands
too frequently to check resource
availability

PrivateData=jobs,reservations,usage,users

Slide - 19

Jupyter Notebook Portal Service

Slide - 20

• Some users create a large number of interactive jobs, which result in wasting
computing resources.

• Recipe:
– Create GRES complex, ijob, and keep track of the resource usage

GresTypes=ijob
AccountingStorageTRES=ijob

– Assign ijob=1 to all interactive jobs
• Enforce by Lua job submission script

– Attach “high” QoS to interactive jobs to increase their scheduling priority
• ”high” QoS limits the number of ijob instances to the desired number (decision by the LLSC team)

MaxTRESPU = gres/ijob=2
• Association-based enforcement to impose on job submission

AccountingStorageEnforce=limits,qos

Limiting Number of Interactive Jobs

Slide - 21

• 100x more productive than standard supercomputing4

• 100x more performance than standard cloud5

• 100% GOTS; 20x GovCloud performance/price6

Enterprise

MIT SuperCloud World Leading Interactive Performance

Supercomputing

- Interactive
- On-demand
- Virtualization

- Map/reduce
- Distributed
- Analytics

MIT SuperCloud

16,000+ MS Windows
instances launched in
5 minutes1

250,000+ analysis
environments
launched in
40 seconds2

1Interactive Launch of 16,000 Microsoft Windows, HPEC 2018; 2Interactive Supercomputing on 40,000 Cores for Machine Learning and Data
Analysis, HPEC 2018; 3Achieving 100,000,000 database inserts per second, HPEC 2014; 4Interactive Grid Computing at Lincoln Laboratory, LL
Journal, 2006; 5Scalability! But at what COST?, McSherry et al., HotOS XV 2015; 6Scalable system scheduling for HPC and big data, JPDC 2018

- High performance
- Scientific computing
- Batch jobs

- Transactions
- Indexing
- Search

32,000+ AI processes
launched in
2 seconds2

= world record

100,000,000+ database
inserts/second3

Big Data Database

Slide - 22

Summary

• LLSC is well positioned to server diverse work loads for large scale jobs with Slurm
– Innovative allocation, and scheduling technologies

• LLSC has demonstrated a number of world-leading interactive performance

• LLSC is now able to monitor users’ jobs better by separating users’ jobs by node
– This provides opportunities to improve system efficiency
– Currently user feedback is based on manual process to monitor users’ jobs using

LLSC-developed tool, LLload
– Future work is to automate some of these manual processes such as identifying

inefficient jobs

• We are looking for a better way to collect GPU usage, possibly by Slurm, which we can
make our tool work more efficiently
– GPU loads averages in 1 min, 5 min, and 15 min?

Slide - 23

Questions?

cbyun@ll.mit.edu

