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Lincoln Laboratory Supercomputing Center 
(LLSC) Role

Mission
Areas

LLSC develops & deploys unique, energy-efficient supercomputing that provides cross-mission
– Data centers, hardware, software, user support, and pioneering research
– 100x more productive than standard supercomputing1

– 100x more performance than standard cloud2
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TX-GAIA: Green AI Accelerator
- World Leader in Interactive AI Supercomputing -

*Based on 2020 Top500.org                    
AI Flops = 4x4 matrix multiply half precision in, single precision out (mixed precision training)

• Significant increase in computing power for 
simulation, data analysis, and machine learning

• Leverages power of 900 Nvidia Volta GPUs

• Largest AI Research System at a University

Capability
Processor Intel Xeon & Nvidia Volta

Total Cores 737,000

Peak 7.4 Petaflops

Top500 5.2 Petaflops (#57 in World*)

Memory 172 Terabytes

Peak AI Flops 100+ Petaflops (#17 in World*)

Network Link Intel OmniPath, 25 GB/s

Low Carbon 
Emission
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Interactive Supercomputing

• Desktop Computing
– CPU-time <20 minutes

• Classic Supercomputing
–  Wall-clock time >3 hours

• Interactive Supercomputing 
– Between desktop and classic 

supercomputing
– Shortens the “time to insight”
– Ten development turns/day instead 

of one turn/week
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Large and Growing Need for Supercomputing
- requires world-class research to optimize diverse applications on complex hardware -

• Challenge: maximizing the efficiency of thousands of users distinct software
• Approach: LLSC developed innovative programming, allocation, and scheduling technologies

pPython
Parallel Python

Hierarchical 
Allocation

Spot
Scheduling

HPC Training via 
Serious Games

3D Monitoring & 
Management
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• Challenges
– Unintentional usages

• Users often do not know whether their applications are aggressively multi-threaded or not.
• Users often do not know how much memory their jobs require.

– Unexpected failures
• Node failed due to an out-of-memory error by other jobs on the same node
• Take time to identify who caused OOM error

• Mitigation
– Exclusive runtime environment on each node
– Limit the impact by unintentional usage and/or failures to a single user
– Innovative allocation with LLSC developed tools: LLsub, LLMapReduce, pMatlab and 

pPython
– Slurm: ExclusiveUser=YES at partition level

Challenges with Shared Systems
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• Traditional allocation
– Cores are slots to be filled with jobs
– 10,000 cores = 10,000 jobs to be 

allocated
• No ability to optimize for memory/core 

architecture

Innovative Allocation Technologies

processor cores

N levels of cache
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User requests: 1 node with 16 processes with 4 threads per process

[1,16,4]
Node mini-
controller

• Hierarchical allocation
– User specifies: nodes, cores, and 

threads
– Allocator divides up jobs among 

nodes
– Dynamically writes hardware aware 

mini-controller on each node to 
independently start, monitor, and 
stop user processes on node

Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs, Byun et al., IEEE HPEC 2021
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Hierarchical Allocation Performance Benchmark
Workloads Configuration

Configuration Rapid 
Tasks

Fast 
Tasks

Medium 
Tasks

Long 
Tasks

Task time, t 1s 5s 30s 60s

Job time per 
processor, Tjob 240s 240s 240s 240s

Tasks per 
processor, n 240 48 8 4

Reference: Scalable system scheduling for HPC and big data, 
https://www.sciencedirect.com/science/article/pii/S0743731517301983

C. Byun et al., "Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs," 
2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2021,

https://www.sciencedirect.com/science/article/pii/S0743731517301983
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Benchmark Size Configuration

Nodes 32 64 128 256 512

Cores per node 64 64 64 64 64

Processors, P 
(cores) 2048 4096 8192 16384 32768

• Multi-level scheduling (LLMapReduce MIMO)* creates an array job of P scheduler 
tasks

• Hierarchical allocation (LLMapReduce MIMO with the triples mode) creates an array 
job of scheduler tasks equivalent to the number of nodes

• Total number of compute tasks (N) varies to maintain the total job time per process 
(Tjob) constant

* C. Byun et al., "LLMapReduce: Multi-level map-reduce for high performance data analysis," 
2016 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2016
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• Dramatically 
accelerates large 
interactive jobs

• Transitioned to 
default LLSC 
approach

Hierarchical Allocation Performance

64 nodes

standard
hierarchical

128 nodes standard
hierarchical

256 nodes standard
hierarchical

Time saved: 20%

Time saved: 45%

Time saved: 40%

Time saved: 90%

512 nodes standard
hierarchical

Node-Based Job Scheduling for Large Scale Simulations of Short Running Jobs, Byun et al., IEEE HPEC 2021
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• Traditional dilemma
– Batch: 90% of nodes used, but user 

waits an hour per hour of run time
– Interactive: launches immediately, 

but 50% of nodes used
– Same wall-clock performance but 

interactive is preferred and more 
efficient

Innovative Scheduling

node
utilization

time

batch
(wait an hour for each hour)

time

interactive
(no waiting)

time

interactive + spot
(no waiting & high utilization)

• Best of both worlds
– Spot jobs that can be instantly 

preempted by interactive jobs 
– Achievable with Hierarchical 

Allocation fast preemption

standard hierarchical

preemption time 
of a 4096 

processor job
(sec)

102

101

100

10-1

80 sec

0.8 sec

100x faster 
no impact on 
interactive 
users

Best of Both Worlds: High Performance Interactive and Batch Launching, Byun et al., IEEE HPEC 2020
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Various Approaches of Spot Job Implementation

Job Lifecycle 
Management

Scheduling

Job QueuesJob QueuesJob Queues

Preemption

Job 
Assignment

Resource 
Allocation 
PoliciesQueue 

Management 
Policies

Job Execution

Pending 
Job Reqs

Current 
Resource 

States

Resource 
Allocations

REQUEUE

CANCEL
Cron-job
Script

• Goal
– Low priority spot jobs would not 

adversely impact the launch times 
of the normal jobs

• Via Resource Allocation Policies
• Vis Queue Management Policies
• Customized Script

– Cron-job script

* Figure adapted from “Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis”, HPEC 2018

*
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Summary of Experiments

Preemption 
Approaches

Preemption 
Mode Partitions Job Types Job Sizes

Automatic by 
scheduler

REQUEUE
Single, Dual

Individual, 
Array, Triple-
mode

Small, 
Medium, LargeCANCEL

Lua job 
submission 
script

REQUEUE Dual N/A N/A

Manual REQUEUE Dual
Individual, 
Array, Triple-
mode

Large

Cron-job script REQUEUE Dual
Individual, 
Array, Triple-
mode

Large
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• System usage at a glance
– LLload displays summary of all jobs running on the system

Monitoring Resource Utilization

$ LLload -g --all
Cluster name: txgreen
Jupyter notebook jobs:
----------------------
  NodeName  Users(GPU)
  ---------------------

[J]c-12-15-2: sa12345
[J]c-15-13-3: br67890
[J]c-15-14-4: ma12345
 [J]c-4-1-1: tr67890
 [J]c-5-9-4: ca12345
[J]c-6-15-4: ma67890

Node information for each user:
-------------------------------
Username: ab12345, Nodes used: 5
  HOSTNAME CORES -  USED =  FREE   LOAD MEMORY -  USED =  FREE  GPUS -  USED = FREE LOAD GPUMEM -  USED =  FREE
 c-14-10-2   40 -   40 =   0   0.00  384GB -  14GB =  370GB   2 -   2 =   0 0.00  64GB -  0GB =  63GB
 c-14-11-1   40 -   40 =   0   0.00  384GB -  13GB =  371GB   2 -   2 =   0 0.00  64GB -  0GB =  63GB
 c-14-12-1   40 -   40 =   0   0.03  384GB -  14GB =  370GB   2 -   2 =   0 0.00  64GB -  0GB =  63GB
 c-14-12-2   40 -   40 =   0   0.01  384GB -  23GB =  361GB   2 -   2 =   0 0.00  64GB -  8GB =  56GB
 c-14-13-1   40 -   40 =   0   1.08  384GB -  20GB =  364GB   2 -   2 =   0 0.11  64GB -  4GB =  59GB

• Challenge to obtain GPU usage on each node
• Current implementation uses a ssh remote execution 

of “nvidia-smi command” on each GPU node
• Ideal if Slurm provides GPU usage information.
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• Before

• After

User Feedback and Coaching

$ LLload –g -u WI12345
Cluster name: txgreen
Username: wi12345, Nodes used: 5
  HOSTNAME CORES -  USED =  FREE   LOAD MEMORY -  USED =  FREE  GPUS -  USED = FREE LOAD GPUMEM -  USED =  FREE
  c-8-16-2   40 -   40 =   0   1.95  384GB -  261GB =  123GB   2 -   2 =   0 0.37  63GB -  3GB =  60GB
 c-13-14-1   40 -   40 =   0   2.33  384GB -  51GB =  333GB   2 -   2 =   0 0.30  63GB -  3GB =  61GB

  c-14-2-1   40 -   40 =   0   2.31  384GB -  51GB =  333GB   2 -   2 =   0 0.37  63GB -  3GB =  61GB
  c-8-7-1   40 -   40 =   0   2.38  384GB -  138GB =  246GB   2 -   2 =   0 0.37  63GB -  3GB =  60GB

  c-7-15-1   40 -   40 =   0   2.56  384GB -  44GB =  340GB   2 -   2 =   0 0.36  63GB -  3GB =  60GB

$ LLload -g -u WI12345
Cluster name: txgreen
Username: wi12345, Nodes used: 3
    HOSTNAME CORES -  USED =  FREE    LOAD MEMORY -   USED =   FREE  GPUS -  USED = FREE LOAD GPUMEM -  USED =  FREE
     c-8-6-1    40 -    20 =    20    1.92  384GB -   47GB =  337GB     2 -     1 =    1 0.24   63GB -   1GB =  62GB
    c-12-3-1    40 -    40 =     0    4.78  384GB -   72GB =  312GB     2 -     2 =    0 0.52   63GB -   2GB =  61GB
    c-8-12-2    40 -    40 =     0    4.53  384GB -   49GB =  335GB     2 -     2 =    0 0.48   63GB -   2GB =  61GB
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• Securing Slurm environment
• Jupyter Notebook Portal Service
• Limiting number of interactive jobs per user

Other Enhancements
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• Cluster-level privacy enforcement
– Controls what type of information is hidden from regular users. 
– Users can see only their own jobs, reservations, and usage 

• Difficult to find system resource availability 
• LLfree provides summary of system usage

Securing Slurm environment

$ LLfree
LLGrid: TXGREEN (running slurm-wlm 23.02.3)
===========================================================================
Partition    | Type         | Cores    | Nodes    | GPUs
---------------------------------------------------------------------------
normal     | Xeon-e5       | 6272    | 224     | N/A  
---------------------------------------------------------------------------
xeon-p8     | Xeon-p8       | 13392    | 279     | N/A  
---------------------------------------------------------------------------
debug-cpu    | Xeon-p8       | 528     | 11     | N/A  
---------------------------------------------------------------------------
manycore    | Xeon64c       | 37888    | 592     | N/A  
---------------------------------------------------------------------------
gaia      | Xeon-g6:Volta    | 7880    | 197     | 394  
---------------------------------------------------------------------------
debug-gpu    | Xeon-g6:Volta    | 360     | 9      | 18   
---------------------------------------------------------------------------

• A cron job by a privileged user generate 
the system resource usage in every 15 
seconds

• The system resource usage is saved in a 
file visible by all users

• LLfree read the file and display as shown 
here

• Side benefits: reduce the scheduler loads 
from users who issue Slurm commands 
too frequently to check resource 
availability

PrivateData=jobs,reservations,usage,users
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Jupyter Notebook Portal Service
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• Some users create a large number of interactive jobs, which result in wasting 
computing resources.

• Recipe:
– Create GRES complex, ijob, and keep track of the resource usage

GresTypes=ijob
AccountingStorageTRES=ijob

– Assign ijob=1 to all interactive jobs
• Enforce by Lua job submission script

– Attach “high” QoS to interactive jobs to increase their scheduling priority
• ”high” QoS limits the number of ijob instances to the desired number (decision by the LLSC team)

MaxTRESPU = gres/ijob=2
• Association-based enforcement to impose on job submission

AccountingStorageEnforce=limits,qos

Limiting Number of Interactive Jobs
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• 100x more productive than standard supercomputing4

• 100x more performance than standard cloud5

• 100% GOTS; 20x GovCloud performance/price6

Enterprise

MIT SuperCloud World Leading Interactive Performance

Supercomputing

- Interactive
- On-demand
- Virtualization

- Map/reduce
- Distributed
- Analytics

MIT SuperCloud

16,000+ MS Windows 
instances launched in
5 minutes1 

250,000+ analysis 
environments 
launched in
40 seconds2 

1Interactive Launch of 16,000 Microsoft Windows, HPEC 2018; 2Interactive Supercomputing on 40,000 Cores for Machine Learning and Data 
Analysis, HPEC 2018; 3Achieving 100,000,000 database inserts per second, HPEC 2014; 4Interactive Grid Computing at Lincoln Laboratory, LL 
Journal, 2006; 5Scalability! But at what COST?, McSherry et al., HotOS XV 2015; 6Scalable system scheduling for HPC and big data, JPDC 2018 

- High performance
- Scientific computing
- Batch jobs

- Transactions
- Indexing
- Search

32,000+ AI processes 
launched in
2 seconds2 

= world record

100,000,000+ database 
inserts/second3 

Big Data Database
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Summary

• LLSC is well positioned to server diverse work loads for large scale jobs with Slurm
– Innovative allocation, and scheduling technologies

• LLSC has demonstrated a number of world-leading interactive performance

• LLSC is now able to monitor users’ jobs better by separating users’ jobs by node 
– This provides opportunities to improve system efficiency
– Currently user feedback is based on manual process to monitor users’ jobs using 

LLSC-developed tool, LLload
– Future work is to automate some of these manual processes such as identifying 

inefficient jobs

• We are looking for a better way to collect GPU usage, possibly by Slurm, which we can 
make our tool work more efficiently
– GPU loads averages in 1 min, 5 min, and 15 min?
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Questions?

cbyun@ll.mit.edu


