
Slurm 23.02, 23.11,
and Beyond

Tim Wickberg
Chief Technology Officer

SLUG Miscellanea

Presentations

● SLUG'23 presentations be available through the publication archive
○ https://slurm.schedmd.com/publications.html
○ Will be uploaded in ~10 days, a note will be sent to the slurm-users list when available
○ Presenters - Thank You!

■ And if you have any last-minute corrections, or if you would prefer your slides
not be included in the archive, please email slugpresent@schedmd.com ASAP

https://slurm.schedmd.com/publications.html
mailto:slugpresent@schedmd.com

Development Cycle

Release Cycle

● Major releases are currently made every nine months
● Version is the two digit year, two digit month:

○ 23.02 - February 2023
○ 23.11 - November 2023
○ 24.08 - August 2024

● Major releases are supported for 18 months
○ Currently: 22.05 and 23.02
○ After November: 23.02 and 23.11

● Maintenance releases are made roughly monthly
○ Usually only for the most recent major release

■ One main exception - security releases will be made for all supported major
releases

Development Process

● Most larger work is handled through sponsored projects
○ SchedMD support only covers maintenance

● Some projects - those of wider community interest - may be handled internally on a
best-effort basis

Enhancement Requests

● Our Bugzilla installation catalogs outstanding requests under the "Sev 5 - Enhancement"
severity level
○ Unless indicated through the "Target Release" field, SchedMD has not committed to

delivering that enhancement (if ever)
■ Currently 551 open tickets… around 30 may make it into a release

● Customer requests are automatically re-routed to Sev 4 on submission for triage, may
move to Sev 5 if we agree that's an interesting potential feature
○ Working to be a bit more opinionated on these, rather than leaving them in limbo

indefinitely, so they may be closed instead of left unassigned
○ Most enhancements will stay in Sev 5 indefinitely, unless sponsored

Slurm 23.02 - February 2023

New scrun command

● Directly launch OCI-compliant container images
● Slurm's version of crun / runc
● Refer to the "Containers" talk from Tuesday for more details

New --tres-per-task option

● Allow jobs to be modeled as a number of tasks, with all appropriate resource types scaled
directly by the number of tasks requested
○ Task can request licenses, GRES, CPUs, memory
○ Note - can't automatically propagate to srun within a batch script in 23.02

AllowAccounts - automatic recursion

● Update the "AllowAccounts" access control to automatically extend access to all child
accounts

License Preemption

● When running with preemption, license usage is not considered by default, and jobs will
not be preempted to free up licenses

● This is an issue especially when using licenses to represent cluster-wide resources, as they
won't be reclaimed to allow higher-priority work to preempt

● Enable with PreemptParameters=reclaim_licenses

Licenses

● https://slurm.schedmd.com/licenses.html#remote_licenses
● Remote licenses can now be set with "flags=absolute"

○ Means the per-cluster assignments are by explicit license count, instead of percent
○ slurmdbd.conf option of AllResourcesAbsolute=yes to enable this by default

● New "LastConsumed" value, designed to be frequently updated with current license server
utilization values
○ Propagated to slurmctld automatically
○ Controller automatically factors that current status in when deciding how many

licenses can be used for new jobs

LicenseName=foobar44@licsrv42
 Total=0 Used=0 Free=0 Reserved=0 Remote=yes
 LastConsumed=0 LastDeficit=0 LastUpdate=2023-02-02T18:20:57

Cloud nodes enhancements

● Pass list of requested features to ResumeProgram
● Reset active features on CLOUD nodes
● Allow for Node Weight to be considered on CLOUD nodes
● New flag to automatically power down "Exclusive" nodes once jobs are completed

Reservation Enhancements

● Add a Comment field to reservations
● Show active reservations on each node in 'scontrol show node'
● Support node addition and removal from a reservation through scontrol with += and -= on

the node list

Accounting Tweaks

● New FailedNode field
○ Set for jobs that have been terminated due to a node failure
○ Help triage hardware issues

New job completion plugin

● New jobcomp/kafka plugin

Performance Improvements

● Halved the number of MUNGE interactions by slurmctld

Flexible Node Counts

● In addition to min and max node counts, allows the user to specify acceptable node
counts
○ E.g., --nodes=20,40,80,160

● Also allows for a step function specification
○ E.g., --nodes=10-30:5 is equivalent to --nodes=10,15,20,25,30

"Explicit" GRES Flag

● Currently, all GRES are allocated to a job when --exclusive is set
● New GRES Flag "Explicit" avoids allocating that GRES by default for --exclusive jobs

○ Will only allocate it when explicitly requested

Debug option handling

● New 'scontrol setdebug <level> nodes=node[1-10]' sub-command
○ Allows dynamic changes to debug level on specified nodes

● 'scontrol setdebugflags flag,flag2,flag3 nodes=node[1-10]' also added

JSON and YAML

● Greatly extended support for JSON and YAML output from user commands
● Now allows many command filtering options to be used as well

RPC Rate Limiting

● New optional per-user RPC rate limiting mechanism
○ Backs off client commands if they're being too chatty
○ Sends new dedicated response code telling the command to sleep for a second

before retrying, rather than crashing the user command
○ Can avoid having 'while true; do squeue; done' overload slurmctld

Slurm 23.11 - November 2023

SlurmDBD Overhaul

● The "right-left tree" data structure was used to represent the association hierarchy in a flat
row-oriented fashion
○ Unfortunately, insertion and deletion is O(n)

■ And can trigger O(n) row updates in the database
■ Which cause O(n) updates to slurmctld

○ New "lineage" approach significantly improves performance
■ Especially when heavily scripting against external accounting systems
■ Must move slurmctld to 23.11 alongside slurmdbd to see benefits

● Otherwise slurmdbd must maintain both structures for
backwards-compatibility

srun --external-launcher

● Common MPI stacks use srun internally to launch their own launch processes
○ orted, hydra, …

● Newer sbatch options - such as --tres-per-task - cannot be inherited by srun without
causing layout issues for mpirun/mpiexec

● New internal --external-launcher flag is automatically propagated back to srun through
mpirun/mpiexec, and indicates srun is being used to bootstrap an external MPI stack
○ Provides all resources on each node to process, does not try to interpret other Slurm

layout options
● Automatically injects four environment variables into job, all set to "--external-launcher":

○ OMPI_MCA_plm_slurm_args
○ PRTE_MCA_plm_slurm_args
○ HYDRA_LAUNCHER_EXTRA_ARGS
○ I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS

Fixing 'scontrol reconfigure'

● Ensure 'scontrol reconfigure', SIGHUP, and restarting slurmctld/slurmd processes all have
equivalent results

● Currently, certain changes cannot take effect within the process through 'scontrol
reconfigure', and require a process restart
○ Which changes can be safely applied through "scontrol reconfigure" currently are…

unintuitive, and undocumented
○ Will finally allow for plugin changes and NodeName changes without issue

Change SlurmctldHost settings without breaking running jobs

● In Slurm 23.02 and older, changes to SlurmctldHost are not possible with jobs running on
the system
○ The slurmstepd processes load their configuration when the step is launched, and

have no mechanism permitting updates
○ Once a job/step completes, the slurmstepd needs to communicate directly with

slurmctld… if you change the IP address of the SlurmctldHost this will fail, and
running jobs will never complete

○ Change allows for slurmstepd processes to be pushed updates by slurmd
automatically

Additonal HA Sanity Checks

● The "Field Notes" presentation mentioned a… hypothetical… issue that can happen if the
StateSaveLocation is not mounted on your backup controller
○ Backup asserts control, has no job state available, and will start killing jobs off when

the slurmd processes on the compute node re-register
● Backup will now check on the heartbeat file, refuse to take control if it is missing

○ Primary controller frequently updates a timestamp in the heartbeat file
■ Used to prevent backups from asserting control too aggressively in a network

partition event
○ Protects against misconfiguration of StateSaveLocation, as well as an array of

potential filesystem problems

New auth/slurm and cred/slurm plugins

● New internal authentication and job credential plugins
○ Alternative to MUNGE
○ Builds off existing capabilities - unix socket authentication through SO_PEERCRED

(used by slurmstepd to authenticate RPCs), plus auth/jwt authentication plugin
● Simple HMAC scheme (SHA-256) built off JWT

○ Separate from existing auth/jwt plugin
○ Will require a shared key that is shared throughout the cluster

■ /etc/slurm/slurm.key
■ Similar security posture to MUNGE

● Will allow for future extension and flexibility…

LDAP-less control plane

● Support running the slurmctld without LDAP
○ Optional capability enabled through auth/slurm's credential extensibility
○ Username, uid, gid, groups will be captured alongside the job submission
○ auth/slurm permits the login node to securely provide these details, which

auth/munge cannot due to protocol limitations

TRES Reservations

● Allow for TRES-oriented reservations
○ E.g., reserve 200 GPUs alongside 800 CPUs

● scontrol create reservation=test start=now duration=5 account=foo
tres=gres/gpu=1

Extensible Features

● Set of key=value pairs, with the values provided by site-specific scripts
○ Can be integers, floats, or string types
○ Values refreshed periodically (on node ping)

■ Flag can mark an extensible feature as unchanging after node boot
● New job submission flag to allow users to filter the cluster nodes for suitable locations

○ Similar, but separate, from existing feature/constraint syntax
● Loosely functionally equivalent to LSF's ELIM feature

○ Not necessarily recommended for most sites

Relative QOS limits

● Flag allows QOS to be specified as a percentage of the cluster's total resources
○ Or an individual partition, if used as a PartitionQOS

Debian Packaging Support

● Provide Debian / Ubuntu package tooling
○ Packages will be under a common slurm-smd-* prefix
○ Package layout will be closer to RPM layout from slurm.spec

OpenAPI, --json/--yaml option updates

● Significant refactoring of the OpenAPI plugin code now allows for most --json/--yaml
command-line options to use their filtering options

● New optional arguments allow CLI tools to provide output through a specific OpenAPI
plugin version
○ Defaults to current OpenAPI schema

● See Nate's REST presentation for additional details

topology/block

● New topology/block plugin - and associated plumbing - that forcibly respects a "block"
oriented topology on certain new hardware platforms

● Ensures jobs are always placed on optimal set of switches, rather than what is currently
available
○ Existing topology/switch plugin is best-effort, and will launch jobs on available

resources immediately rather than wait indefinitely for a better fit
○ Downside: system utilization can collapse if not kept in check

Soft Time Limits

● Allow a job to provide the expected run time in addition to the traditional hard time limit
○ Use this value for backfill planning, rather than the usual time limit
○ Increases system utilization, especially for systems with a few large jobs and a

constant flow of higher-throughput
● Not recommended for most general-access systems, as users would be incentivized to

submit all work with a very short soft limit to get it running immediately
○ Designed for more "cooperative" environments with a smaller user base
○ Optional, must be explicitly configured to enable

● Slurm's configuration files don't have network details for the dynamic nodes
○ But commands such as srun and sdiag need to communicate directly with those

nodes
○ Initial dynamic node support relied on flattening all communication by disabling

fanout, and passing network details through environment variables and other means

Cloud / Dynamic Nodes

● Network changes in 23.11
○ The cloud_reg_addrs option has been removed

■ Option told slurmctld to automatically update it's address cache with the
inbound IP address when slurmd registered

■ Now the default for behavior for cloud / dynamic / dynamic_future nodes
○ CommunicationParameters=NoAddrCache option removed

■ No longer needed that cloud_reg_addrs is the default
● Message Fanout

○ Fanout now works with cloud and dynamic nodes
○ Passes node addresses through dynamic tree automatically
○ Allows offload of internal bookkeeping operations (node ping, reconfigure) to the

slurmd processes again, reduces network load on slurmctld

Cloud / Dynamic Nodes

● RoutePlugin=route/partition
○ Use Partitions as the boundary for message fan-out

■ Acts independently of the topology/tree plugin, which can still be used for
scheduling if desired

○ Useful for multi-zone / multi-network clusters to limit potential failure propagation

Cloud / Dynamic Nodes

● Cloud InstanceId InstanceType
○ sacctmgr show instances
○ Useful to track what class of cloud hardware was used

Cloud / Dynamic Nodes

Cloud / Dynamic Nodes

● Revamped networking - "Alias Addresses"
○ Client commands get alias addresses automatically through appropriate RPCs

■ Or through new dedicated RPC
○ Clients don't rely on older "alias_list" approach now

■ Remove SLURM_NODE_ALIASES
■ For large-scale cloud node launch, this prevents the job environment from

exploding, as that variable could be massive in practice

SelectTypeParameters=CR_LL_GRES

● Similar to CR_LLN… but favor nodes with least-loaded GRES
○ CR_LLN only considers CPU occupancy
○ This allows you to steer jobs to nodes have the least occupied GPUs instead

Shards

● Shards allow for GRES (e.g., GPUs) to be cooperatively split
○ See https://slurm.schedmd.com/gres.html#Sharding for further details
○ Similar to NVIDIA's MPS, but without any specific hardware cooperation
○ No enforcement of cooperation - not recommended for most systems

● Enhancements focus on allowing a job to have shards across multiple GPUs within a single
node, as well as enabling --tres-per-task to work seamlessly with these shards

https://slurm.schedmd.com/gres.html#Sharding

… and Beyond

Slurm 24.08

ReservedCoresPerGPU

● Dedicate cores on node to GPU work
○ Cores only assigned if the corresponding GPU has been allocated to the job
○ Allows for CPU-based workloads to better overlap into GPU nodes, without

threatening to starve the GPU workloads and risk idling the (expensive) GPUs
● Currently, the same use case can be partially covered by using the MaxCPUsPerNode

setting on a Partition
○ But that doesn't easily scale with a heterogeneous mix of nodes, and requires

splitting work across multiple partitions

Node Features

● Allow for Node Features changes without rebooting the node
○ The node_features plugin interface was originally designed for CPU NUMA/memory

layout changes for the Intel KNL chips, and assumed any changes would require the
node to reboot to take effect

○ But most, e.g., GPU mode changes can be done live
■ Inconvenient to need a node reboot for all changes

○ Currently required by the node_features stack, although can be faked by using the
"-b" option to slurmd with some careful scripting in your RebootProgram

Further auth/slurm extensions

● Capture and send processes' SELinux context as part of the auth token

Backfill tweaks

● topology/block can lead to throughput issues under high fragmentation
○ Backfill scheduler is "conservative" in existing implementation

■ Will never stall the launch of a higher priority job, will always plan for it to start
ASAP, and only then plan other jobs around it

■ With the topology strictly enforced, fragmentation can lead to considerable
delays… but launching large jobs on the first available fitting set of nodes may
perpetuate high-level fragmentation

○ Exploring approaches to mitigate these issues, potentially develop a heuristic that is
willing to delay larger job launches in favor of reduced fragmentation, and higher
utilization rates

… and even further beyond*

*if ever

Scope Limit for MPI Plugins

● Refactor the mpi plugin interface to run most hooks as the user, rather than uid 0
● CVE-2023-41915 implies we cannot always trust the MPI libraries we build against…

Standalone Step Management Layer

● Build on the isolation of the step management code (see Brian's talk from earlier)
○ Potentially allow a lightweight independent step management process to run

underneath a Slurm (or other WLM) allocation
● Extend the step management layer with support for CWL or other workflow standards

Converged Computing

● Slurm cooperatively scheduling alongside other cloud orchestration layers, such as
Kubernetes

● Extend/adopt official support for projects like CoreWeave's SUNK

Upcoming Events

Tim Wickberg
CTO

Upcoming Events

● SC'23 - Booth 463
● Slurm Community Birds-of-a-Feather, Thursday, Nov. 16, 12:15-13:15, Room 201-203

Open Forum

Tim Wickberg
CTO

