Ansys

Powering Innovation That Drives Human Advancement

Maximizing HPC Efficiency for Ansys Simulations: Addressing Critical IT Concerns with Slurm Resource Management and Scheduling

David Clifton, Lead Systems Engineer Morten Loderup, Sr. Manager HPC IT

Slurm User Group 13 Sept. 2024, University of Oslo

Agenda

- Brief introduction to Ansys
- HPC at Ansys

Conclusion

- Lessons learned
- HPC Trends

Brief Introduction to Ansys

Introduction to Ansys

Energy

Defense

Healthcare

Automotive Transportation & Mobility

Industrial Equipment

High Tech

Aerospace

Founded 1970 CAE/multiphysics engineering simulation software President: Ajei Gopal Employees: 6,300 (2024) HQ: Canonsburg, PA, USA 2023 Revenue: \$2.27 B USD

/nsys

Ansys simulation of a 3 cars collision

Increased pressure to deliver on the classic challenges

30%

Time-to-market

Cycle times

66%

New product rollouts

Strong need for faster innovation with better outcomes at lower costs

Ansys 5 pillars of innovation

Driving your greatest innovations and solving your toughest challenges

HPC at Ansys

HPC at Ansys

- Our customers' goals
- Deployment models: Cloud and Onpremises
- Nature of Ansys HPC simulation jobs
- HPC IT goals to address customer goals
- Challenges and solutions
- Observability of HPC Simulation jobs

Our Customers' IT Simulation Goals

- Available HPC infrastructure to run large models with billions of cells
- Minimum wait time to submit jobs
- 'Fair' distribution of available HPC infrastructure
- Efficiency of simulation results (post processing analytics)
- Proper VDI (Virtual Desktop Interface) support
- Tackle longer transients and more complex physics in hours rather than in days of solve
- Reduce time with GPU computing
- Run multiple simulations in parallel
- Get higher-fidelity insight into how designs are going to work in the real world
- Container support
- 12 © 2024 ANSYS, Inc. / Proprietary. Do Not Share.

Our Customers

Ansys Fluent® Semiconductor Ansys Mechanical™ Ansys LS-DYNA® Ansys Dynamore™ Ansys Lumerical™ Ansys Speos® Others..

HPC deployment models to support customer simulation needs

Deployment 1: Multi-core desktop computer

- Usual starting point for most accounts, and most common deployment model
- Mostly Windows-based hardware with its own compute, storage and graphics
- · Hardware characteristics:
- Up to 10+ CPU cores
- Up to 128 GB of RAM
- 1 GPU
- Pros:
- Good capability for pre- and postprocessing
- Good performance for most Mechanical, HFSS and Maxwell applications (except for DOE studies)
- Relatively easy to maintain by end user
- · Cons:
- Lack of performance for most Fluent and LS-DYNA applications
- Tedious to maintain by IT in case of many other desktop computers
- HPC/hardware partners:
- Dell, HP Inc., Lenovo, Supermicro, BOXX, Exxact Corp, Gen X, KOI Computers, 2CRSI

Deployment 3: Datacenter

- For relatively large accounts with geographically distributed users
- Linux-based hardware with fast storage, compute and visualization nodes; despite use of VDI, often combined with desktop computer for interactive workflows
- Hardware characteristics:
- More than 1000 of CPU cores
- More than 1TB of RAM
- More than 10 GPUs
- Up to 400 Gbps network bandwidth
- Pros:
- Adequate hardware capacity for both high fidelity and high throughput demands for Fluent and LS-DYNA workloads
 Good IP protection and process traceability
- · Cons:
- Significant upfront CapEx required
- Most complex to size, configure and maintain (but HPC OEMs and SIs among our HPC partners do help)
- Challenging to meet intermittent workloads and heterogeneous workload requirements
- HPC partners:
- Hardware: HPE, Dell, Lenovo, Fujitsu, 2CRSI
- SI for HPC: Atos, GNS Systems, Nor-Tech, OCF, TotalCAE, X-ISS

Deployment 2: Multi-node server

- For accounts having multiple concurrent simulation users
- · Mostly Linux-based hardware with remote storage, and graphics via Windows desktop computer
- Hardware characteristics:
- Up to 10s of CPU cores
- Up to 1TB of RAM
- Up to 4 GPUs
- Pros:
- Good performance for computational demanding products like Fluent and LS-DYNA
- Affordable, scalable/expandable systems once computational demands or group of users increases
- Cons:
- More complex to size, configure and maintain (but SIs among our HPC partners do help)
- Challenging to meet both high fidelity and throughput demands for Fluent and LS-DYNA workloads
- HPC partners:
- Hardware: HPE, Dell, Lenovo, Fujitsu, Supermicro, 2CRSI
- SI for HPC: GNS Systems, Nor-Tech, TotalCAE, X-ISS

Deployment 4: Cloud

- For SMB accounts lacking IT staff, hardware and CapEx; for Enterprises where in-house HPC is at max capacity and cloud is a corporate initiative
- Usual compute-optimized or memory-optimized Virtual Machine (VM) instances; sometimes bare-metal instances
- · Hardware characteristics:
- Virtually unlimited capacity with 10,000s of CPU cores (from Intel, AMD or ARM), and GPU cores (from Nvidia, AMD)
- Up to 1TB of RAM per node/instance
- Up to 200 Gbps network bandwidth (e.g., AWS' Elastic Fabric Adapter)
- Pros:
- Optimal for meeting intermittent workloads and heterogeneous workload requirements
- Removal of IT barriers (i.e., no need to maintain the hardware and software; access to the latest generation of powerful hardware; hardly any upfront investment; access to HPC experts and data security specialists)
- Cons:
- Data security is sometimes inadequate for customer's needs
- Costs are relatively high compared to that of on-premises hardware at ~80% utilization
- · Cloud partners:
- CSP: AWS, Azure, GCP, and OCI
- CHP: Atos/Nimbix, Rescale, UberCloud, Gridcore, Penguin Computing, Syncious
- SI: Atos, Kalypso, Nextira, science+computing, Transition Technologies

Nature of Ansys Simulation jobs

- Different approach to memory and cores
- Different usage of GPUs
- Good neighbor vs bad neighbor (can/cannot run in same partition)
- Different solvers
- Storage access
- IO utilization

HPC IT goals to address customer needs

- Observability
- Shared resources
- Cost management
- Research and innovation
- Performance improvement
- Transparency and accountability
- BU alignment and cross-BU resource harmonization

HPC Challenges and opportunities

- Observability and performance awareness (network, compute, storage)
- CPU core and memory allocation, utilization, and efficiency
- Cost overruns for cloud-based simulation jobs
- Automation

Observability for our HPC environments

- Slurm Accounting database
- Native observability commands (sinfo -R -o)
- Slurm Exporter for Prometheus
- Grafana
- XDMoD
- ServiceNow Audit Tests (nodes, partition, clusters)
- Cloud HPC costing data

Observability

Slurm Exporter downtime is monitored as Level 2 operational metric.

\$22.3K (\$306)(\$193)(\$41.2)(\$11.5)(\$8.66

Observability with <u>XDMoD</u>: Partition Utilization – all partitions

Observability with <u>XDMoD</u>: Wait time by Principal Investigator

Observability with Grafana dashboards – Cloud vendor A – Costing

Lessons learned

HPC IT Lessons Learned

- Listen to our customers and our customers' customers
- Identify sources of truth via telemetry
- Adopt SRE principles: SLOs, Monitor, Automate, Release Engineer, Simplicity, Embrace Risk

Conclusion

HPC Trends

- Increased Engineering Productivity
- Increased Product Complexity
- Increased Product Integrity
- Emerging Cloud Adoption
- Heterogeneous HPC environment
- Increased demand for GPU computing

Conclusion

- Ansys implementation of Slurm
- HPC at Ansys is advancing
- Increased Engineering Productivity, Product Complexity, and Product Integrity

Come see us at www.ansys.com and at SC24

