



# Improving Job Throughput in HPC with Adaptive Time Limit Management

#### Thomas Jakobsche University of Basel, Basel, CH

| Florina M. Ciorba   | University of Basel, Basel, CH    |
|---------------------|-----------------------------------|
| Jim Brandt          | Sandia National Laboratories, US  |
| Ann Gentile         | Sandia National Laboratories, US  |
| Quentin Guilloteau  | University of Basel, Basel, CH    |
| Michael Ott         | Leibniz Supercomputing Centre, DE |
| Osman Seckin Simsek | University of Basel, Basel, CH    |
| Torsten Wilde       | Hewlett Packard Enterprise, DE    |

SLUG'24 - Slurm User Group Meeting 2024 University of Oslo, Problemveien 11, 0313, Oslo 11-13 September 2024





Hewlett Packard Enterprise

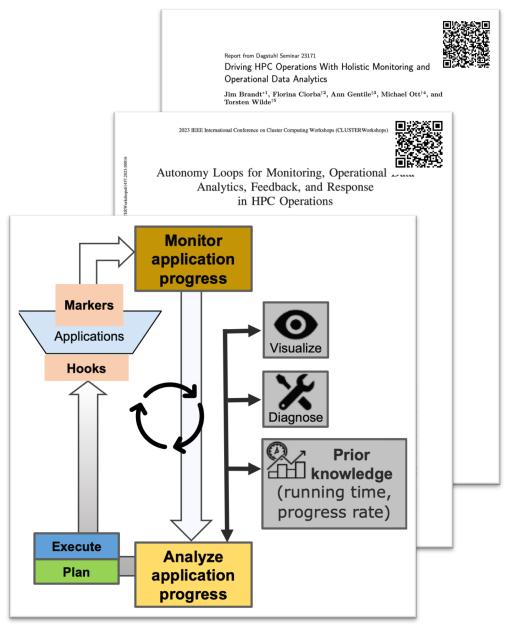




# Outline

### 1 Context

- 2 Problem and Solution
- 3 Challenges
- 4 Proof-of-Concept
- 5 Summary and Next Steps
- 6 Questions for the Community


# Context

## **Dagstuhl Seminar 23171**

- HPC monitoring is well explored and generates tons of data
- Analysis of and response to monitoring data is mostly manual
- Human-in-the-loop is becoming intractable and unfeasible
- Wonderful And Fundable Vision Report (WAFVR)

## **WAFVR** Initiative

- Use Cases of Autonomy Loops for HPC Operations
- Automated response with human-on-the-loop
  instead of simply human-in-the-loop
- Adapting time limits of running jobs to improve system throughput and reduce wasted time and energy



# **Problem and Solution**

# Problem

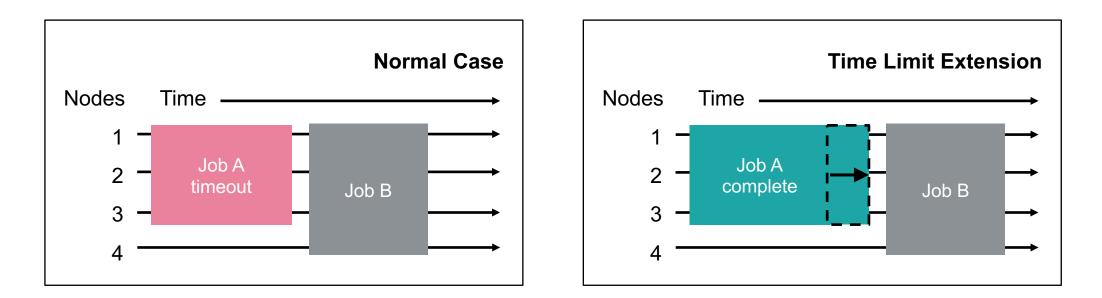
Wasted energy and computational time

- Losing computational progress to **timeouts**
- Inefficient scheduling due to time limit overestimation

# Motivation

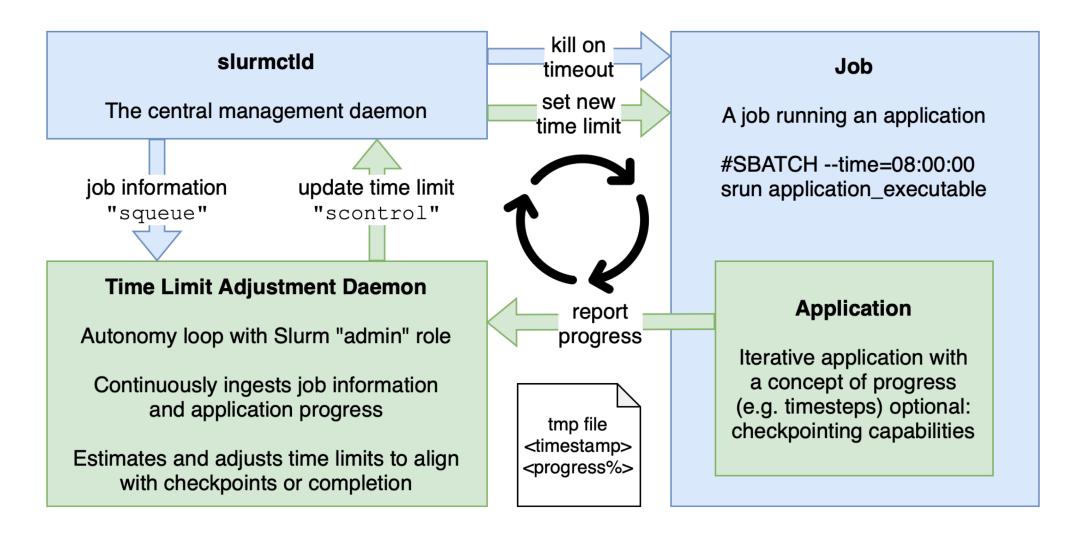
Ensure the efficient use of HPC resources and reduce energy consumption

• Scientific: Improve science / second


• Environmental: Reduce wasted energy and computations

# **Proposed Solution**

Avoid wasteful timeouts through autonomy loop between system scheduler and applications


- "Blanket" OverTimeLimit vs. individual and informed adjustments
- Adjust job time limits based on application progress towards checkpoints or completion

# **Challenges of OverTimeLimit and Time Limit Adjustments**



- Time limit extensions of executing jobs can avoid timeouts but delay queued jobs
- Time limit extensions of backfilled jobs can delay higher priority jobs (soft vs. hard time limits)
- "Blanket" time limit extension of all jobs through OverTimeLimit does not guarantee completion
- > Our approach incorporates application progress for an individualized job time limit adjustment

# **Proof-of-Concept** Time Limit Adjustment



# **Proof-of-Concept** Time Limit Adjustment: Experimental Setup

### **System Specifications**



- 20-node fully-controlled research cluster
- Isolated experiments through reservations

### **Target Application**



- SPH-EXA simulation framework executing a Sedov blast simulation
- Extended with progress reporting

### **Background Jobs**

- Sleep jobs with configurations from a random subset of short production jobs\* from Aug'23
- Requested nodes (1-6), execution times (1m-10m), time limits (10m-1w), + submit pattern

#### Workload and Experiments

### Workload of 46 jobs

- 39 background jobs (all completing)
- 7 randomly injected identical SPH-EXA Sedov jobs, submitted with 7m time limit but need ~8m to complete

### Experiments with the entire 46-job workload

- 1) SPH-EXA timeout
- 2) SPH-EXA timeout + resubmission with 30m
- 3) SPH-EXA time limit extension, no timeout

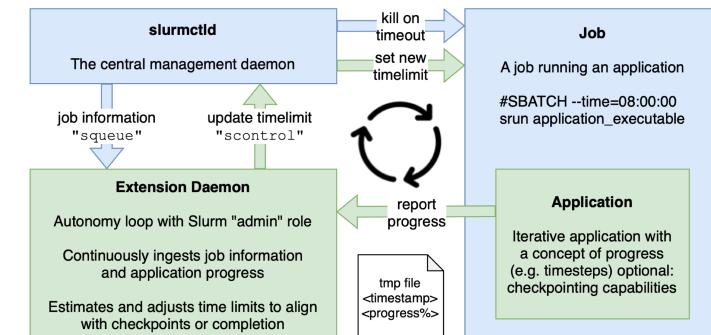
### **Research Questions**

- Do adjustments "break" job scheduling?
- Do adjustments reduce wasted time & energy?

\*sciCORE, scientific computing center at University of Basel, Switzerland

# **Proof-of-Concept** Time Limit Adjustment: Results: CD - Completed, TO - Timeout

| Workload & Scheduling<br>Characteristics | <b>1) Timeout</b><br>average of 5 repetitions<br>max variation ±1.8% |     |       | 2) Timeout +<br>Resubmission<br>average of 5 repetitions<br>max variation ±6.3% |     |       | <b>3) Time limit adjustment</b><br>average of 5 repetitions<br>max variation ±1.9% |    |       |
|------------------------------------------|----------------------------------------------------------------------|-----|-------|---------------------------------------------------------------------------------|-----|-------|------------------------------------------------------------------------------------|----|-------|
|                                          | CD                                                                   | то  | Total | CD                                                                              | то  | Total | CD                                                                                 | то | Total |
| Number of jobs                           | 39                                                                   | 7   | 46    | 46                                                                              | 7   | 53    | 46                                                                                 | 0  | 46    |
| CPUTime [h]                              | 333                                                                  | 95  | 428   | 443                                                                             | 95  | 538   | 441                                                                                | 0  | 441   |
| ConsumedEnergy [MJ]                      | 6.6                                                                  | 2.2 | 8.8   | 9.0                                                                             | 2.2 | 11,2  | 9.0                                                                                | 0  | 9.0   |
| Throughput [Compl. jobs/h]               | 55                                                                   |     | 53    |                                                                                 |     | 62    |                                                                                    |    |       |
| Average job wait time [s]                | 317                                                                  |     |       | 419                                                                             |     |       | 332                                                                                |    |       |


# **Conclusion and Next Steps**

### Conclusion

- Working autonomy loop to dynamically adjust time limits
- **Tradeoff:** Slightly increased average job wait time for achieving higher throughput

## **Next Steps**

- Testing on production HPC systems
  - Can we test on your system  $\odot$ ?
- Aligning time limit adjustments with application checkpoints



# **Questions for the Slurm Community**

### **Application Developers**

• Are they willing to implement progress reporting? [<timestamp>, <progress%>]

### System Administrators

- Have they tested similar approaches? Do they work?
- Is there a need for automated decisions?

### **Slurm Developers**

- Are there plans to develop communication between the scheduler and applications?
- Are there plans to incorporate monitoring/application data for scheduling decisions?

Come talk to me in person or contact me & co-authors at: <u>thomas.jakobsche@unibas.ch</u> (and title slide)





# Improving Job Throughput in HPC with Adaptive Time Limit Management

#### Thomas Jakobsche University of Basel, Basel, CH

| Florina M. Ciorba   | University of Basel, Basel, CH    |
|---------------------|-----------------------------------|
| Jim Brandt          | Sandia National Laboratories, US  |
| Ann Gentile         | Sandia National Laboratories, US  |
| Quentin Guilloteau  | University of Basel, Basel, CH    |
| Michael Ott         | Leibniz Supercomputing Centre, DE |
| Osman Seckin Simsek | University of Basel, Basel, CH    |
| Torsten Wilde       | Hewlett Packard Enterprise, DE    |

SLUG'24 - Slurm User Group Meeting 2024 University of Oslo, Problemveien 11, 0313, Oslo 11-13 September 2024





Hewlett Packard Enterprise



