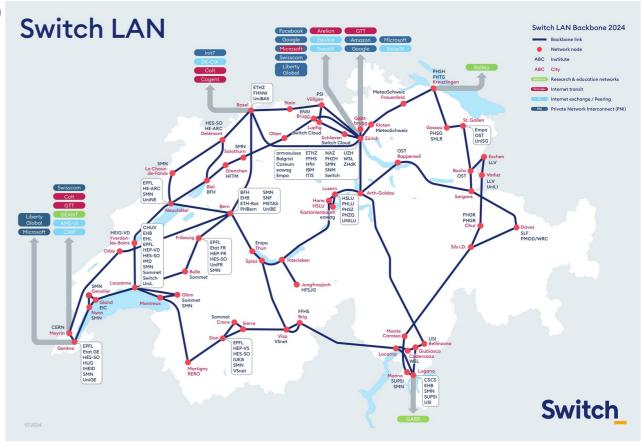


The evolution of Slurm at CSCS: from monolithic service to multi-tenant vService

SLUG '24 Oslo Gennaro Oliva, CSCS 2024-09-12

About CSCS

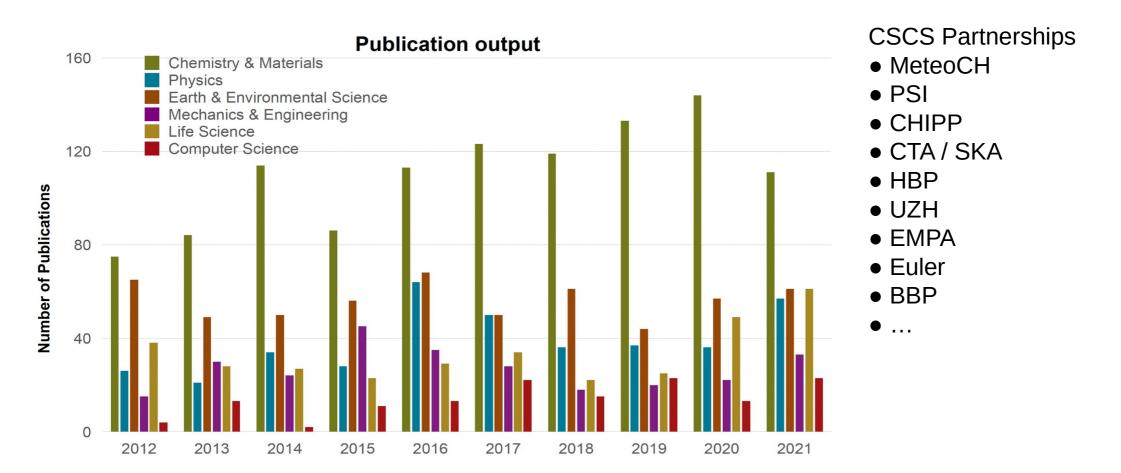

 The Swiss National Supercomputing Centre is the national high-performance computing centre of Switzerland

• The acronym CSCS comes from the italian:

Centro Svizzero di Calcolo Scientifico

• The Centre is located in Lugano, in the southern part of Switzerland, within the Italian-speaking region

 CSCS is well connected across Switzerland (and beyond)



CSCS Mission

 We develop and operate a high-performance computing and data research infrastructure that supports world-class science in Switzerland

About ETH Zurich

 CSCS is a unit of ETH Zurich (Swiss Federal Institute of Technology Zurich) a leading international university renowned for its cutting-edge research, highquality education, and innovation in science, technology, engineering, and mathematics

About Alps

 Alps is the flagship HPC system built on the HPE Cray EX architecture providing powerful resources for a range of scientific applications, from simulations to data analysis, while being energy-efficient and scalable to meet

future needs

Alps locations

- Alps is a geographically distributed computing and storage infrastructure:
 - CSCS in Lugano
 - EPFL in Lausanne
 - Paul Scherrer Institute (PSI) in Villingen for data archiving
 - ECMWF in Bologna for access to meteorological data

Alps Specs

Model	HPE Cray EX
Interconnect	HPC Cray Slingshot-11 with 200 Gbps injection bandwidth per module / GPU
Scratch disk	100 + 10 PB on hard disk 5 + 1 PB on Solid State Disk (SSD)
Data archive and backup	2 x 130 PB tape libraries

Alps nodes overview

# of nodes	# of sockets per node	Total # of sockets	Processor(s)	Specifications
2,688	4	10,752	NVIDIA Grace-Hopper	72 ARM cores, 128 GB LPDDR 5X RAM, H100 GPU with 96 GB HBM3 memory
1,024	2	2,048	AMD EPYC 7742 CPU (Rome)	2x64 cores, 256/512 GB DDR RAM
144	1 CPU + 4 GPU	720	AMD EPYC host CPU + NVIDIA A100	64 cores, 128 GB DDR RAM) and 4 NVIDIA A100-96/80 (96/80 GB HBM2E
128	4	512	AMD Mi300A CPU+GPU	
24	1	24	AMD EPYC host CPU + AMD Mi250X GPU	64 cores, 128 GB RAM) and 4 AMD Mi250X GPU

Alps in the Top 500

List	Rank	System	Total Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
06/2024	6	HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11	1,305,600	270.00	353.75	5,194.00

Cray CSM

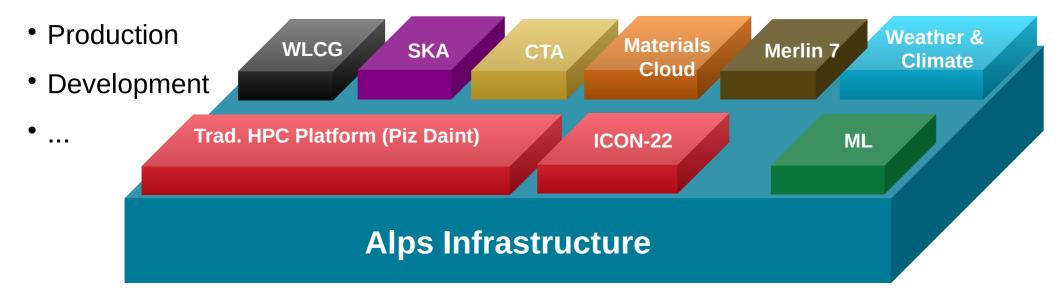
- Alps runs Cray System Management (CSM) software
- In CSM, cluster services runs as microsevices on a dedicated kubernetes infrastructure:
 - Boot image creation
 - Boot services
 - Ansible configuration
 - Node health management
 - Monitoring

- Node Power management
- Hardware inventory management
- Network Fabric management
- Workload manager

• These services generally see all the computing nodes to be part of a single cluster

Cray Slurm microservice

 Slurm has a dedicated kubernetes namespaces where Slurm control damon together with the database daemon and databases run as pods on the management plane

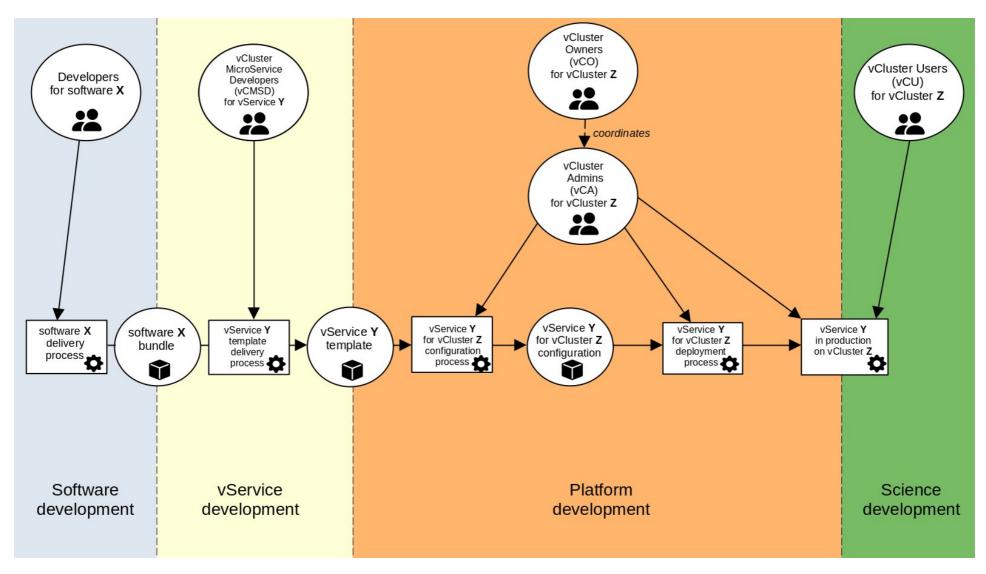

goliva@ncn-m001:~> kubectl -n rigi get pods				
NAME	READY	STATUS	RESTARTS	AGE
rigi-pxc-operator-8578f8bcf6-7rpqp	1/1	Running	0	14d
slurmctld-5f5ddf6bd5-lp9zn	3/3	Running	Θ	14d
slurmctld-backup-679c6d5c9d-vcptn	3/3	Running	Θ	14d
slurmdb-haproxy-0	2/2	Running	0	14d
slurmdb-haproxy-1	2/2	Running	0	14d
slurmdb-haproxy-2	2/2	Running	0	14d
slurmdb-pxc-0	1/1	Running	0	11d
slurmdb-pxc-1	1/1	Running	0	11d
slurmdb-pxc-2	1/1	Running	0	11d
slurmdbd-7485b9f996-xcjc4	3/3	Running	0	14d
slurmdbd-backup-f44c75758-5gz7b	3/3	Running	0	14d
xb-cron-slurmdb-backup-202482421100-3r9er-td8l5	0/1	Completed	0	2d11h
xb-cron-slurmdb-backup-202482521100-3r9er-w7fmb	0/1	Completed	Θ	35h
xb-cron-slurmdb-backup-202482621100-3r9er-mjpkd	0/1	Completed	Θ	11h

Alps platforms

- CSCS currently hosts different research platform, sharing the same Hardware infrastructure
- Platform are subsets of Alps on top of infrastructure that enables the deployment of one or multiple vClusters
- There are multiple types of Platforms:
 - HPC
 - Grid

vCluster

- vClusters (versatile software-defined clusters) is based on Infrastructure-ascode (IaC) technology
- vClusters approach mixes HPC and cloud technologies resulting in a softwaredefined, multi-tenant cluster on a supercomputing ecosystem, that, together with software-defined storage, enable DevOps for complex, data-driven workflows
- vClusters software environment is composed of vServices


vService

- vService stands for "**v**ersatile cluster micro**service**" a small, independent, and loosely coupled service hosted on a vCluster
- Vservices follow DevOps practice of continuous integration and delivery for fast and safe deployment of features and updates
- Each vService comes with its own runtime software stack
- vServices features are:
 - Focused and small in scope designed to perform an specific task or closely related functionality
 - Independently deployable: changes to one vService should not propagate to others, reducing the integration effort
 - Loosely coupled: Interactions between vServices are clearly defined and limited

Vservice, vClusters and roles

Slurm vService

- Slurm vService implementation is built upon an automated, version-controlled deployment and management process, utilizing:
 - GitLab for CI/CD
 - Terraform for service provisioning
 - Kubernetes for orchestrating the Slurm controller and database daemons
 - Nomad for native slurmd agent deployment on the HPE Cray EX compute nodes

Slurm vService (Kubernetes)

- Kubernetes orchestrates containerized instances of Slurm daemons such as the Slurm controller (slurmctld), the Slurm database daemon (slurmdbd), and the Slurm rest daemon (slurm-restd), each running within dedicated pods in a Kubernetes tenant namespace
- This setup enhances management by:
 - Automating the deployment of Slurm components, ensuring high availability and fault tolerance
 - Utilizing Kubernetes secrets management to handle sensitive configurations securely, ensuring that components such as Munge (for authentication) are correctly configured across deployment

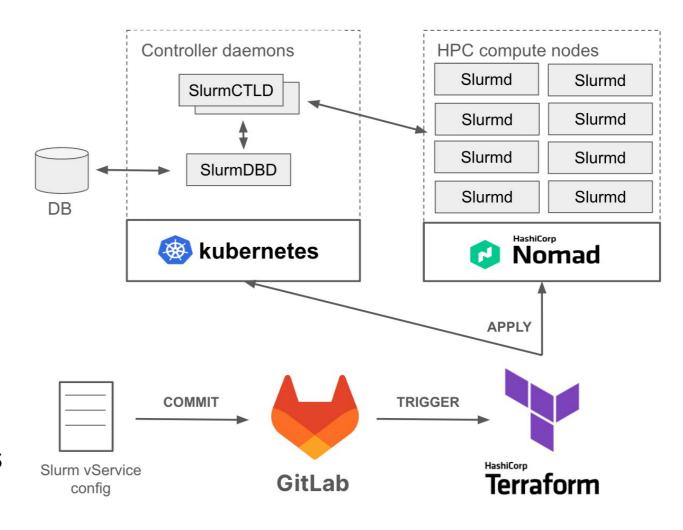
Slurm vService (Nomad)

- Nomad is employed to manage the deployment of native services on Compute Nodes
- Nomad orchestrates the deployment of the Slurm daemon (slurmd) on compute nodes, extensively using its capability to manage non-containerized tasks
- Key benefits include:
 - Nomad can manage native tasks using the "rawexec" task driver. This allows for direct interaction with compute node hardware, ensuring performance and no overheads
 - Nomad agents running on cluster's compute nodes, allow a flexible mechanism to manage resources via software and fast reconfiguration

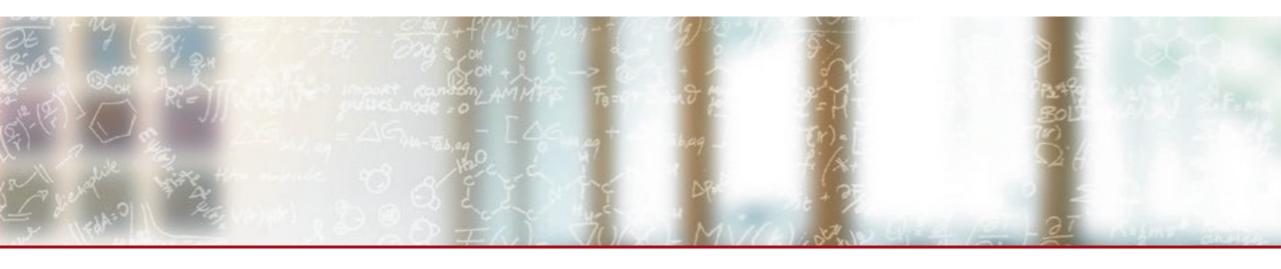
Slurm vService (Terraform)

- Terraform plays a fundamental role in provisioning and managing the underlying infrastructure for both Kubernetes and Nomad environments
- By using IaC, Terraform ensures that all service components are deployed consistently and are reproducible
- This process is critical for:
 - Quick and consistent setup of the required services, reducing manual configuration errors and increasing deployment speed
 - Central management of both containerized and native service components, simplifying the complexity of operating diverse technological stacks while ensuring that the component deployment order is respected

Slurm vService (Gitlab)


- GitLab integrates the entire deployment process through GitLab runner implementation of CI/CD pipelines, automating the deployment and version control of the Slurm implementation
- This ensures that all deployments are consistent, reproducible, and automated, streamlining the management of service changes:
 - Automated pipelines deploy updates and new configurations of services without downtime, improving the responsiveness to changes
 - Version control of configurations provides improved tracking and management for all service changes

Slurm vService workflow


- The vCluster admin commit changes to the GitLab repository that holds the Cluster configuration
- Changes trigger GitLab's CI/CD pipelines wich interacts with Kubernetes and Nomad
- Kubernetes orchestrate the deployment of the containerized application
- Nomad schedules and manages native Slurm daemon tasks directly on the compute nodes

Thanks for your attention

SLUG '24 Oslo Gennaro Oliva, CSCS September, 2024

