DTU

Slurm Wiki and Tools – a Niflheim site report

Dr. Ole Holm Nielsen Department of Physics Technical University of Denmark (DTU)

- Email: <u>Ole.H.Nielsen@fysik.dtu.dk</u>
- Wiki: <u>https://wiki.fysik.dtu.dk/Niflheim_system/</u>
- Tools: https://github.com/OleHolmNielsen/Slurm_tools

Slurm documentation and our Wiki

- SchedMD offers many excellent pages for Slurm administrators in the **Documentation pages**, and everyone is recommended to consult these pages for authoritative information.
- Our site started working with *Slurm* in 2015, but found the documentation back then scant and lacking both in overview and in the details.
- As a *Slurm* newbie, I started **writing down everything** I did to get *Slurm* up and running on our CentOS 7 based cluster, including **exact Linux commands** and configuration files.
- This became a public *Slurm* Wiki, now at <u>https://wiki.fysik.dtu.dk/Niflheim_system/</u> (mirrored at *ReadTheDocs* <u>https://niflheim-system.readthedocs.io/en/latest/</u>) The Wiki has apparently been useful to other *Slurm* sites as well.
- A user-driven Wiki may significantly ease the learning curve for deploying Slurm.

Slurm support

- Our **Slurm support contract** with *SchedMD* has been important for improving the information in the Wiki, and conversely helped to improve a few of *Slurm's* documentation pages.
- The excellent *Slurm* support from *SchedMD* has helped us a lot in providing trouble-free operations and a high productivity of our cluster employing only a very minimal IT staff.

Slurm Wiki overview

- The Wiki discusses **selected** *Slurm* **features** needed by relatively simple small-to-medium sized clusters (10s to a few 1000s of nodes).
- Exact Linux commands for EL8 and EL9 (*RHEL*, *RockyLinux*, *AlmaLinux*, etc.) are given, in contrast to generic instructions which are valid for any Linux distribution, but have to be interpreted by the user to obtain specific OS commands.
- This Wiki is based on actual user experiences and requirements as we upgraded Slurm through every major version since 15.08, and started to exploit new Slurm features along the way.
- **Support cases** with *SchedMD*, as well as discussions on the **slurm-users** mailing list, are incorporated into the Wiki as reference information.

Wiki highlights: Installation and Upgrading

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_installation/
- Setting up system accounts, how to install Munge, and other prerequisite RPM packages.
- Building and installing **RPMs** on EL8 and EL9 systems.
- *Slurm* log file rotation.
- **Upgrading major releases** should be done carefully:
 - *Slurm database* upgrade dry-run on a test node (lots of details provided).
 - Upgrade of slurmctld and possibly migrating it to a new server.
 - Upgrade of slurmd is usually straightforward, also on a running production system.
- 5 **DTU Fysik, Danmarks Tekniske Universitet**

Wiki highlights: Configuration

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_configuration/
- "Configless Slurm" testing.
- Configuring the LBNL Node Health Check (<u>NHC</u>) package.
- Building FreeIPMI power control and monitoring into Slurm.
- Kernel configuration: ARP cache, maximum number of open files.
- **PAM** configuration for <u>pam slurm adopt</u> SSH login restrictions.
- Temporary job scratch directories (job_container/tmpfs plugin).
- EL8/EL9 firewalld configuration.

Wiki highlights: Database

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_database/
- Initial setup of *MariaDB*.
- Setting database purge parameters for old records.
- Database backup (using logrotate) and database restore.
- Migration of slurmdbd to a new server.

Wiki highlights: Slurm Operations

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_operations/
- Configure *Slurm* **RPC** rate limiting.
- Expanding and collapsing **host lists**.
- **Passwordless SSH** configuration.
- **<u>ClusterShell</u>** parallel commands: Installation, configuration and usage.
- Compute node OS and firmware **rolling upgrades** during normal operations.

Wiki highlights: Power Saving Configuration

- Wiki page: https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_cloud_bursting/
- Power saving can be used both for **on-premise nodes** as well as **cloud nodes**.
- Shutting down ("suspend") nodes for **saving electricity and cloud costs**.
- See also the previous presentations SLUG'22 <u>Pathfinding into the clouds</u> and SLUG'23 <u>Saving Power with Slurm</u>.
- Compute **nodes are now turned off and on dynamically** by slurmctld as required, enabling significant cost savings.

Wiki highlights: Power monitoring

- Wiki page: <u>https://wiki.fysik.dtu.dk/Niflheim_system/Slurm_configuration/#power-monitoring-and-management</u>
- After configuring FreeIPMI, you can enable Power monitoring in *slurm.conf* using AcctGatherEnergyType=acct_gather_energy/ipmi
 - A serious **IPMI-related bug in** *slurmd* was fixed in 23.02.7 (<u>Bug 17639</u>).
- Enable IPMI Data Center Manageability Interface (**DCMI**) power monitoring.
 - Problematic non-DCMI-compliant BMCs (e.g., Xfusion, Huawei Bug 17704).
- When IPMI power monitoring has been enabled, it becomes possible (in principle, and for jobs using nodes exclusively) to make **energy accounting of individual jobs**.
 - Job energy accounting is still not fully reliable as of *Slurm* 23.11.10/24.05.3 due to a number of *slurmd* issues (<u>bug 20207</u>).

Slurm tools from the Niflheim GitHub site

- Niflheim tools are available from https://github.com/OleHolmNielsen/Slurm_tools
- These tools were developed over time when we needed to monitor the cluster operations, when we needed to configure Slurm, and when we needed to implement additional functionality.
- These tools mostly employ standard *Slurm* commands such as sinfo, squeue, scontrol, sacctmgr, etc.
- The most important tools are discussed in the following pages:

How many jobs and users are in the queue?

\$ showuserjobs Batch job status for cluster niflheim at Thu Aug 29 16:34:03 CEST 2024

Node states	summary:					
allocated	678 nodes	(96.86%)	29360 C	PUs (94.78%)	
drained	3 nodes	(0.43%)	272 C	PUs (0.88%)	
draining	4 nodes	(0.57%)	288 C	PUs (0.93%)	
idle	7 nodes	(1.00%)	528 C	PUs (1.70%)	
idle~	5 nodes	(0.71%)	288 C	PUs (0.93%)	Powered off
mixed	2 nodes	(0.29%)	160 C	PUs (0.52%)	
planned	1 nodes	(0.14%)	80 C	PUs (0.26%)	
Total	700 nodes	(100.00%)	30976 C	PUs (100.00%)	

Job summary: 3582 jobs total (max=20000) in all partitions.

Username/		Runnin		Limit	Pendin		
Totals	Account	Jobs	CPUs	CPUs	Jobs	CPUs	Further info
				=====		======	
GRAND_TOTAL	ALL	667	29576	Inf	2915	119943	Running+Pending=149519 CPUs, 52 users
ACCT_TOTAL	camdvip	257	11192	Inf	884	37346	Running+Pending=48538 CPUs, 9 users
ACCT_TOTAL	catvip	153	7226	Inf	147	6248	Running+Pending=13474 CPUs, 6 users
ACCT_TOTAL	ecsvip	163	6934	Inf	1786	70285	Running+Pending=77219 CPUs, 18 users
manja	camdvip	107	4984	5000	74	4272	llear full names
olich	catvip	117	4968	5000	143	5560	User full flames
kartsh	camdvip	86	3632	5000	324	13248	
-	-				-		

What is the status of Slurm partitions?

\$showpa	artition	ns											
Partitic	on stat:	istics	for cl	luster	niflhei	m at T	hu Aug 2	29 16:13	8:16 C	EST 202	24		
	Part:	ition	#No	odes	#CPU_	cores	Cores_p	ending	Job	Nodes	MaxJobTime	Cores	Mem/Node
	Name	State	Total	Idle	Total	Idle	Resorc	Other	Min	Max	Day-hr:mn	/node	(GB)
xeon2	24el8:*	up	186	0	4464	0	0	11847	1	infin	2-02:00	24	256+
xeon24e]	L8_test	up	2	2	48	48	0	0	1	infin	30	24	256
xeon24e]	L8_week	up	20	0	480	0	0	0	1	infin	7-00:00	24	256
xeon24e	e18_512	up	12	0	288	0	0	0	1	infin	2-02:00	24	512
xec	on40e18	up	320	4	12800	160	0	21720	1	infin	2-02:00	40	384
xeon40e	el8_768	up	12	2	480	80	0	1640	1	infin	2-02:00	40	768
xeon40e	el8_clx	up	128	2	5120	80	0	0	1	infin	2-02:00	40	384
	xeon56	up	96	0	5376	0	0	69384	1	infin	2-02:00	56	512
sm3	3090el8	up	7	4	560	464	0	320	1	infin	7-00:00	80	191+
sm3090e	el8_768	up	4	1	320	224	0	0	1	infin	7-00:00	80	768
sm3090	_devel	up	1	0	80	72	0	0	1	infin	12:00	80	191
xeon3	32_week	up	2	0	64	0	0	32	1	infin	7-00:00	32	4096
xeon3	32_4096	up	4	2	128	64	0	0	1	infin	2-02:00	32	4096
a10	0 week	up	2	1	256	224	0	0	1	infin	7-00:00	128	512
	_a100	up	4	3	512	480	0	0	1	infin	2-02:00	128	512
	epyc96	up	68	0	6528	0	0	6432	1	infin	2-02:00	96	768
Note: Th	ne clust	ter de	fault p	partiti	ion name	is in	dicated	by :*					

What are the nodes and jobs doing?

- The pestat command can give many different kinds of node and job overviews.
- The usual *Slurm* options (and more) can be used: -p, -u, -A, -q, -t, -w, -j, ...
- For example:

\$ pestat F	-р ерус96											
Print only nodes that are flagged by * (RED nodes)												
Print only no	odes in partit	ion epy	c96									
Hostname	Partition	Node	Num_	CPU	CPUload	Memsize	Freemem	Joblist				
		State	Use/	Tot	(15min)	(MB)	(MB)	JobID User				
e005	epyc96	drain*	0	96	0.00	768000	769821					
e006	epyc96	drain*	0	96	0.00	768000	769315					
e009	epyc96	idle	0	96	96.24*	768000	671486					
e018	epyc96	alloc	96	96	104.17*	768000	742671	7625705 yundi				
e024	epyc96	alloc	96	96	103.66*	768000	446522	7630058 laumu				
e027	epyc96	alloc	96	96	101.91*	768000	551690	7630058 laumu				
e028	epyc96	alloc	96	96	102.26*	768000	751016	7625705 yundi				
e064	epyc96	alloc	96	96	103.70*	768000	740925	7625706 yundi				
e065	epyc96	alloc	96	96	102.28*	768000	750932	7625706 yundi				

When will *draining* nodes become idle?

- The pestat command's "-E" (Job EndTime) option can be combined with the "-t draining" option.
- Sorting on the job *EndTime* (in column 11).
- For example:

<pre>\$ pestat E -t draining -C sort -k 11 Forse calors ON in output</pre>											
Hostname	Partition	Node	Num	CPU	CPUload	Memsize	Freemem	Joblist			
Job EndTime is printed after each JobID/user											
Select only nodes with state=draining											
		State	Use,	/Tot	(15min)	(MB)	(MB)	JobID User EndTime			
x192	xeon24e18*	drng*	24	24	24.31	256000	223429	7637111 olich 2024-08-31T01:48:46			
a128	xeon40e18	drng*	40	40	40.15	384000	350799	7637214 olich 2024-08-31T15:31:25			
e001	epyc96	drng*	96	96	97.65	768000	746859	7637913 s222468 2024-08-30T15:55:48			
sd651	a100 week	drng*	32	128	1.72*	512000	502586	7630936 magstr 2024-09-04T09:10:57			

What are the user processes in a job or a node?

psjob 7606946 JOBID PARTITION NODES TASKS USER ARRAY JOB ID ARRAY TASK ID START TIME TIME TIME LIMIT 7606946 2024-08-28T05:16:33 1-11:11:06 7606946 xeon32 wee1 32 mhfga N/A 6-21:00:00NODELIST: b021 _____ b021 PID NLWP S USER STARTED TIME %CPU RSS COMMAND Aug 28 00:00:00 0.0 3872 /bin/bash /var/spool/slurmd/job7606946/slurm sc 220255 1 S mhfga 220346 1 S mhfga Aug 28 00:00:00 0.0 3108 /bin/bash /home/energy/modules/software/QChem/6 220359 95 S mhfga Aug 28 41-08:57:08 2822 3190520496 /home/energy/modules/software/QChem/6.0 Total: 3 processes and 97 threads Uptime: 16:27:39 up 10 days, 5:59, 0 users, load average: 31.92, 32.26, 32.45 psnode) s006 Node 5006 information: PARTITION CPUS CPU LOAD S:C:T NODELIST MEMORY STATE REASON sm3090e18 80 2.00 4:10:2 s006 768000 mixed none sm3090e18 80 s006 2.00 4:10:2 768000 mixed none Jobid list: 7639340 7642783 Node s006 user processes: PID NLWP S USER STARTED TIME %CPU RSS COMMAND 3772 1 S magstr 10:01:13 00:00:00 0.0 3260 /bin/bash /var/spool/slurmd/job7639340/slurm sc 10:01:13 06:26:53 99.6 3082444 python fast molvae/sample.py --nsample 50000 3777 4 R magstr 13:31:47 00:00:00 0.0 3296 /bin/bash /var/spool/slurmd/job7642783/slurm sc 7155 1 S magstr 7343 6 R magstr 13:41:22 02:47:46 99.7 3378856 python -u /home/energy/magstr/git/FastJTNNpy3 Total: 4 processes and 12 threads DTU Fysik, Danmarks Tekniske Universitet 16

Notifying users about badly behaving jobs

 Sending an E-mail alert to users when the Slurm administrator believes the job is using resources in an inefficient or incorrect manner:

\$ notifybadjob 7642902

Please select one of the following reasons why you want to Notify about this job:

- 1. Your job is doing no useful work and is essentially dead.
- 2. Your job has grossly exceeded the available physical RAM memory and is very inefficient.
- 3. Your job has grossly exceeded the physical RAM memory available per CPU core.
- 4. Your job is running too many processes/threads and is overloading the CPU(s).
- 5. Your job is using more CPU cores than your job has requested.
- 6. Your job is not using all of the CPU cores or GPUs that you have requested.
- 7. Your job is not using all of the GPUs that you have requested.

Job submit plugin for checking job sanity

- The **Slurm job_submit plugin** is a very useful feature for making sure that user jobs are checked for sanity (e.g., that numbers of CPU cores and/or GPUs requested correspond to the requested node hardware).
- Only trivial job_submit plugins can be found in the Slurm documentation or by searching the internet ☺
- We provide an example job_submit Lua plugin with a number of configurable checks that can be customized according to the site's job policies: <u>https://github.com/OleHolmNielsen/Slurm_tools/tree/master/plugins</u>
 - This job_submit.lua plugin has been extremely useful for catching user mistakes when submitting to the wrong partitions, or request an incorrect number of CPUs/GPUs, etc.

Managing accounts when adding/removing users

- When system *passwd* and *group* databases change, how do we **synchronize** this with the *Slurm* **accounts**?
 - We propose to use the already existing UNIX *passwd* and *group* information to define a mapping onto the *Slurm* account tree hierarchy. See details in SLUG'19 <u>Slurm Account Synchronization with UNIX Groups and Users</u>
- The slurmusersettings tool can create, update or delete users in the *Slurm* database based on the system *passwd* database. It can be used to set or update user limits.
- The showuserlimits tool displays user limits by parsing the highly convoluted output from the scontrol show assoc_mgr command.
- The showjobreasons tool shows a summary of reasons for jobs being in the Pending state.

Slurm accounting

- The slurmreportmonth tool conveniently generates monthly, weekly, and yearly accounting statistics from *Slurm* using the sreport command.
- The slurmacct and topreports tools (which use sacct) have some advantages over the sreport command:
 - Partition specific accounting is possible.
 - Average CPU count (job parallelism) is printed.
 - Average waiting time in the queue is printed (answer to "My jobs wait for too long").
 - Users' full name is printed (useful to managers).

Conclusions

- SchedMD offers a lot of excellent *Slurm* documentation which should be consulted first.
- However, there still is a need for **exact Linux commands**, exact RPM package versions, and configuration file details for clusters that employ an "*Enterprise Linux"* family operating system (*RHEL, RockyLinux, AlmaLinux,* etc.).
- Our **Wiki site** offers many additional details regarding *Slurm* installation and upgrading, configuration of services, and procedures for daily operations.
- Energy and cloud savings are important and can be configured with Slurm.
- We provide *Slurm* Tools on *GitHub* that significantly improves the management of jobs, nodes, power consumption, *Slurm* accounts, users, and user limits.
- Some of the tools provide (possibly more useful) *Slurm* accounting reports.