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Jump Trading
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• Jump Trading is a proprietary trading firm committed to world-

class research

• Full migration to Slurm in 2023

• Enabling research at scale requires automation, flexibility, self-

service systems, and a mindset of constant improvement



Slurm at Jump Trading

Agenda

• Jump Trading HPC overview

• Workload Characteristics and Slurm migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?
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Jump HPC Fabric
• Textbook HPC components

• RDMA-capable fabric

• Parallel filesystem

• Workload manager (Slurm)

• Add: Many Slurm clusters (1 or 30+ per fabric)

• Separate clusters per internal team or project

• Dynamically resizable by users via self-service automation

• Add: “Tiered Archive” storage system1

• Read-only filesystem presentation (CVMFS)

• Backed by HTTP caches and cloud storage

• rsync-like write interface for users

4
[1] https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-

CVMFS-Presentation-JUMP.pdf

https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-CVMFS-Presentation-JUMP.pdf
https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-CVMFS-Presentation-JUMP.pdf


Multi-fabric

• Scale out to N 

fabrics in a DC

• Contains blast 

radius of fabric and 

parallel FS issues

• Data sharing 

among fabrics via 

Tiered Archive only

5



Multi-site
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• Scale out to N 

datacenters



Slurm at Jump Trading

Agenda

• Jump Trading HPC overview

• Workload Characteristics and Slurm migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

7



Workload Characteristics
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• Most jobs are short, single-core, and data-intensive

• Nodes run many tasks from many different jobs and users

• Expectation of “immediate” task starts when resources are available

• High Slurm throughput required to keep clusters full

• Most pipelines orchestrated by in-house workflow generator

• Complex workflows, thousands of work units, submitted in job arrays

• Abstracts away Slurm details

• Performance sensitive to delta between submit time and start time



Workload Characteristics
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Many exceptions and complications

• Complicated resource requests (both node-local and cluster-

wide), including GPUs (both partial and exclusive access)

• Large jobs (including multi-node) versus small, short jobs

• Some large jobs use MPI

• Want to avoid starvation of large jobs by small jobs

• Deadline-sensitive pipelines (e.g., must finish by midnight)

• Some “power users” prefer direct Slurm access



Slurm Migration Playbook
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• Provide teams with a Slurm cluster alongside the incumbent 

batch system’s cluster

• Teams grow (via self-service automation) their Slurm cluster 

and shrink the incumbent cluster, eventually to zero

• Bump in the road?  Reverse this process

• Many issues triggered by high throughput and only surfaced at scale

• Migration completed by end of 2023
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Sponsored Features
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Challenge Slurm Solution

Many dynamic logical clusters, user-sized Dynamic nodes (22.05) – Sponsored by Jump

• No node definitions in slurm.conf

• Pairs well with configless mode

Existing user practice: “soft” feature requests Preferred Features (22.05) – Sponsored by Jump

•  --prefer: Like –constraint, but best effort

• Users tag nodes with features (Jump automation)

• Enables “spillover” (reserve N nodes for a pipeline, 

but allow use of other free nodes)

Per-task resource requirements

• Many GRES (including GPU) requests 

previously were per-node in Slurm

• But our nodes are heterogeneous and can 

run tasks from many jobs

--tres-per-task (23.02) – Sponsored by Jump

• Per-task requests like resources (GPUs, etc.)



Sponsored Features
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Challenge Slurm Solution

Existing user practice: time-slicing GPUs GPUs sharding (22.05) – Sponsored by Jump

• Users may request full GPUs or shards of GPUs

• Some teams use MIG (Multi-Instance GPU) instead

Granular control over GPU shards Per-task shards (23.11) – Sponsored by Jump

• MULTIPLE_SHARING_GRES_PJ SelectType

• Jobs need multiple “sharing” (e.g., shards) GRES 

per node

Shard {anti-,}affinity (23.11) – Sponsored by Jump

• Require shards on same/different physical GPUs

• Toggleable per job



Sponsored Features
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Challenge Slurm Solution

Runtimes hard to estimate

• Research problem maps well to one job 

array task per data slice

• Data slices are different sizes

• External factors (e.g., FS performance)
• Users react by overestimating --time by 100x

Soft Time Limits (23.11) – Sponsored by Jump

• --time-min used for backfill

• --time still used for hard time limit

High job throughput

• Core counts per node keep increasing

• Need other “expensive” features 

(preemption, backfilling) enabled

• Avoid starvation of large jobs

Development in progress – Sponsored by Jump
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Slurm enhancements for High-throughput
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• Slurm controller locks contention decrease High-throughput perf

• Slurm Controller is highly/multi-threaded

• Slurm internal data structures are protected by read/write locks

• Internal Slurm components acquire the read / write locks they need

• Internal Slurm components timing may vary depending on the scale / complexity

• Locks arbitration logic mostly based on the # of RPC 

• Schedulers (Main or backfill) stop / yield under high incoming 

RPC load until reaching a low level again

• yield_rpc_cnt = MAX((max_rpc_cnt / 10), 20)

• Heavy RPC processing serialized+delayed under outgoing RPC 

load

• This may lead to suboptimal scheduling perf under HT

• Free/available resources not being used fast enough

# Incoming RPCs

Time

max_rpc_cnt

yield_rpc_cnt

20

Sched OkSched Ok Sched Limited



Slurm enhancements for High-throughput
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• Hidden existing enable_rpc_queue parameter

• Create a dedicated processing queue+thread for certain types of RPCs

• Experimental / incomplete native logic in Slurm

• Queued RPCs not counted in max_rpc_count

• Local enhancement of the rpc_queue logic

• Additional RPC types managed via rcp_queue

• per-RPC-type credits|time-based concurrency model

• Associated tunables per RPC type

• max_per_cycle, max_usec_per_cycle, yield_sleep, interval, max_queued, …

• per-RCP-type disabling is possible

• (read-lock only RPCs may be better served with the native logic) 

Queue-enabled RPCs :

REQUEST_JOB_INFO

REQUEST_JOB_USER_INFO

REQUEST_JOB_INFO_SINGLE

REQUEST_FED_INFO

REQUEST_NODE_INFO

REQUEST_PARTITION_INFO

REQUEST_COMPLETE_PROLOG

REQUEST_COMPLETE_BATCH_SCRIPT

REQUEST_JOB_STEP_CREATE

MESSAGE_NODE_REGISTRATION_STATUS

REQUEST_SUBMIT_BATCH_JOB

REQUEST_STEP_COMPLETE



Slurm enhancements for High-throughput
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• Enhanced rpc_queue logic is not perfect but greatly helps

•  More deterministically spread locks time across the main areas of activities

• Jobs submissions

• Jobs states monitoring

• Jobs scheduling

• Jobs completion & epilog

• Queued RPCs still keep their

    TCP socket opened

• Need to properly configure queues tunable, especially max queue size (to trigger client backoff retries and/or abort) 

• # of RPCs still used in parallel

• To help throttle down sched during incoming RPC peaks

• For non-rpc_queue aware RPCs

• For rpc_queue enabled RPCs while pushing them to their queue

Others.
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Slurm enhancements for High-throughput
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• Enhancement of the sched yield / stop thresholds conf

• Keep sched enabled under heavy yet manageable RPC load

• Make yield_rpc_cnt configurable, example :

• max_rpc_cnt = 150

• yield_rpc_cnt = 100

• (greater than the default max of 20)

• Other modifications have been made to help improving sched performances like

• Reducing the amount of time required per backfill job scheduling attempt taking some shortcuts

• May not apply to all workloads

• Reusing free resources as soon as possible even when nodes are completing

• to better handle large SMP nodes with single-core jobs

# Incoming RPCs

Time

max_rpc_cnt

yield_rpc_cnt

20

Sched OkSched Ok Sched

Limited
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What’s next ?
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• SchedMD has integrated Jump rpc_queue enhancements in 24.05

• Still considered experimental and hidden

• A new rpc_queue.yaml file enables to configure the various per RPC type tunings

• Other improvements added and/or ongoing by SchedMD to further improve HT in 24.05 and 24.11

• SchedMD has reviewed some of our scheduling modifications

• And is actively working on alternatives to further improve performances in 24.11

    (part of the in-progress development sponsored by Jump)

• Additional local patches / features (not discussed in this presentation) maintenance

• Let’s discuss later if some of the following subjects matter to you

• Automatic association of a default Account to jobs belonging to undefined users

• Direct step-cancelation in OOM situations, cgroup(v1) time-sharing issues between jobs

• Opt-in memory overcommitment in jobs to use in best-effort more memory than allocated when possible



Slurm at Jump Trading

Q&A

22



Slurm at Jump Trading

Backup Slides
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Slurm enhancements for High-throughput
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• Context

• Slurm Controller is highly/multi-threaded

• Incoming RPCs threads

• Outgoing RPCs threads (agents for compute nodes actions requests)

• Backfill scheduler thread

• Main sched agent thread

• Main loop/house-keeping thread

• …

• Slurm internal data structures are protected by read/write locks

• Configuration / Jobs / Nodes / Partitions / Federations

• Locks ensure that states stay consistent across the variety of handled events

• Slurm threads acquire the read / write locks they need when needed

• Potentially preventing other concurrent components to do their job

• Potentially being delayed / starved by other components
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Slurm enhancements for High-throughput
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• Context

• Internal Slurm components acquire the read / write locks they need

• Potentially preventing other concurrent components to do their job

• Potentially being delayed / starved by other components

• Internal Slurm components timing may vary depending on

• The size and complexity of the cluster

• amounts of resources / generic resources / GPUs / licenses / …

• The number of active/recent jobs

• in different states including running, pending, recently terminated

• The specificities of configuration

• # of partitions, # of various nodes weights,  preemption / oversubscription options, …



Slurm enhancements for High-throughput
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• Context

• Some potential large locks-time consumers are also natively throttled

• One-by-one serialization in various RPCs processing

• REQ_RESOURCE_ALLOCATION, REQ_SUBMIT_BATCH_JOB, REQ_KILL_JOB, …

• _throttle_start / _throttle_fini with extra usleep to help locks rotation between RPCs

• Bigger usleep when outgoing RPCs/Agents is high (LOTS_OF_AGENTS)

• Tend to increase the # of associated incoming RPC threads in case of burst

• Thus, triggering the yield/stop of the schedulers

• Other heavy locks-time consumers appear at some scales

• RPC_JOB_INFO / RPC_JOB_USER_INFO with (dozens of) thousands of jobs, …



Slurm enhancements for High-throughput
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• Slurm in high-throughput mode is pushing the model to its limits

• High submission and/or completion rates means lot of incoming RPCs

• Schedulers yielding almost all the time

• Not enough locks-time to schedule enough jobs

• Global usage of resources lower than expected / possible

• Schedulers even with enough cycles, have difficulties to keep the 

resources fully used under high turn-over pressure



Slurm enhancements for High-throughput
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• rpc_queue enhancements at Jump

• New logic+tunings to add a credits|time-based concurrency model

• For each RPC type, the following tunings can be defined :

• max_per_cycle : # of RPCs that can be processed in a single batch

• max_usec_per_cycle : max amount of microsecs for a single batch

• yield_sleep : amount of microsecs to yield between 2 batches under pressure

• interval : amount of microsecs to sleep between 2 batches with no pressure 

• max_queued : max # of pending RPCs in the queue before backpressure

• hard_drop : indicates if backpressure should trigger retries on client side or not

• Allow additional RPCs to be used with rpc_queue

• To cover observed major elements (exp: epilog completion)



Slurm enhancements for High-throughput
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• Example of sched modification for HT on large SMP nodes

• Slurm Schedulers avoid scheduling new jobs on completing nodes

• Large SMP nodes tend to always be completing under HT situations

• Large SMP nodes are only eligible for jobs when not a single job is currently 

ending / completing

• This can reduce global efficiency, as free cores/mem can not be used

• bf_ignore_cg_state to allow the backfill scheduler to schedule jobs on 

completing nodes
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