
Slurm User Group – September 2024
Matthieu Hautreux, Larry Pezzaglia

Jump Trading

2

• Jump Trading is a proprietary trading firm committed to world-

class research

• Full migration to Slurm in 2023

• Enabling research at scale requires automation, flexibility, self-

service systems, and a mindset of constant improvement

Slurm at Jump Trading

Agenda

• Jump Trading HPC overview

• Workload Characteristics and Slurm migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

3

Jump HPC Fabric
• Textbook HPC components

• RDMA-capable fabric

• Parallel filesystem

• Workload manager (Slurm)

• Add: Many Slurm clusters (1 or 30+ per fabric)

• Separate clusters per internal team or project

• Dynamically resizable by users via self-service automation

• Add: “Tiered Archive” storage system1

• Read-only filesystem presentation (CVMFS)

• Backed by HTTP caches and cloud storage

• rsync-like write interface for users

4
[1] https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-

CVMFS-Presentation-JUMP.pdf

https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-CVMFS-Presentation-JUMP.pdf
https://indico.cern.ch/event/1377701/contributions/5863778/attachments/2837970/4959865/HEPIX-CVMFS-Presentation-JUMP.pdf

Multi-fabric

• Scale out to N

fabrics in a DC

• Contains blast

radius of fabric and

parallel FS issues

• Data sharing

among fabrics via

Tiered Archive only

5

Multi-site

6

• Scale out to N

datacenters

Slurm at Jump Trading

Agenda

• Jump Trading HPC overview

• Workload Characteristics and Slurm migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

7

Workload Characteristics

8

• Most jobs are short, single-core, and data-intensive

• Nodes run many tasks from many different jobs and users

• Expectation of “immediate” task starts when resources are available

• High Slurm throughput required to keep clusters full

• Most pipelines orchestrated by in-house workflow generator

• Complex workflows, thousands of work units, submitted in job arrays

• Abstracts away Slurm details

• Performance sensitive to delta between submit time and start time

Workload Characteristics

9

Many exceptions and complications

• Complicated resource requests (both node-local and cluster-

wide), including GPUs (both partial and exclusive access)

• Large jobs (including multi-node) versus small, short jobs

• Some large jobs use MPI

• Want to avoid starvation of large jobs by small jobs

• Deadline-sensitive pipelines (e.g., must finish by midnight)

• Some “power users” prefer direct Slurm access

Slurm Migration Playbook

10

• Provide teams with a Slurm cluster alongside the incumbent

batch system’s cluster

• Teams grow (via self-service automation) their Slurm cluster

and shrink the incumbent cluster, eventually to zero

• Bump in the road? Reverse this process

• Many issues triggered by high throughput and only surfaced at scale

• Migration completed by end of 2023

Slurm at Jump Trading

Agenda

• Jump Trading HPC Overview

• Workload Characteristics and Slurm Migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

11

Sponsored Features

12

Challenge Slurm Solution

Many dynamic logical clusters, user-sized Dynamic nodes (22.05) – Sponsored by Jump

• No node definitions in slurm.conf

• Pairs well with configless mode

Existing user practice: “soft” feature requests Preferred Features (22.05) – Sponsored by Jump

• --prefer: Like –constraint, but best effort

• Users tag nodes with features (Jump automation)

• Enables “spillover” (reserve N nodes for a pipeline,

but allow use of other free nodes)

Per-task resource requirements

• Many GRES (including GPU) requests

previously were per-node in Slurm

• But our nodes are heterogeneous and can

run tasks from many jobs

--tres-per-task (23.02) – Sponsored by Jump

• Per-task requests like resources (GPUs, etc.)

Sponsored Features

13

Challenge Slurm Solution

Existing user practice: time-slicing GPUs GPUs sharding (22.05) – Sponsored by Jump

• Users may request full GPUs or shards of GPUs

• Some teams use MIG (Multi-Instance GPU) instead

Granular control over GPU shards Per-task shards (23.11) – Sponsored by Jump

• MULTIPLE_SHARING_GRES_PJ SelectType

• Jobs need multiple “sharing” (e.g., shards) GRES

per node

Shard {anti-,}affinity (23.11) – Sponsored by Jump

• Require shards on same/different physical GPUs

• Toggleable per job

Sponsored Features

14

Challenge Slurm Solution

Runtimes hard to estimate

• Research problem maps well to one job

array task per data slice

• Data slices are different sizes

• External factors (e.g., FS performance)
• Users react by overestimating --time by 100x

Soft Time Limits (23.11) – Sponsored by Jump

• --time-min used for backfill

• --time still used for hard time limit

High job throughput

• Core counts per node keep increasing

• Need other “expensive” features

(preemption, backfilling) enabled

• Avoid starvation of large jobs

Development in progress – Sponsored by Jump

Slurm at Jump Trading

Agenda

• Jump Trading HPC Overview

• Workload Characteristics and Slurm Migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

15

Slurm enhancements for High-throughput

16

• Slurm controller locks contention decrease High-throughput perf

• Slurm Controller is highly/multi-threaded

• Slurm internal data structures are protected by read/write locks

• Internal Slurm components acquire the read / write locks they need

• Internal Slurm components timing may vary depending on the scale / complexity

• Locks arbitration logic mostly based on the # of RPC

• Schedulers (Main or backfill) stop / yield under high incoming

RPC load until reaching a low level again

• yield_rpc_cnt = MAX((max_rpc_cnt / 10), 20)

• Heavy RPC processing serialized+delayed under outgoing RPC

load

• This may lead to suboptimal scheduling perf under HT

• Free/available resources not being used fast enough

Incoming RPCs

Time

max_rpc_cnt

yield_rpc_cnt

20

Sched OkSched Ok Sched Limited

Slurm enhancements for High-throughput

17

• Hidden existing enable_rpc_queue parameter

• Create a dedicated processing queue+thread for certain types of RPCs

• Experimental / incomplete native logic in Slurm

• Queued RPCs not counted in max_rpc_count

• Local enhancement of the rpc_queue logic

• Additional RPC types managed via rcp_queue

• per-RPC-type credits|time-based concurrency model

• Associated tunables per RPC type

• max_per_cycle, max_usec_per_cycle, yield_sleep, interval, max_queued, …

• per-RCP-type disabling is possible

• (read-lock only RPCs may be better served with the native logic)

Queue-enabled RPCs :

REQUEST_JOB_INFO

REQUEST_JOB_USER_INFO

REQUEST_JOB_INFO_SINGLE

REQUEST_FED_INFO

REQUEST_NODE_INFO

REQUEST_PARTITION_INFO

REQUEST_COMPLETE_PROLOG

REQUEST_COMPLETE_BATCH_SCRIPT

REQUEST_JOB_STEP_CREATE

MESSAGE_NODE_REGISTRATION_STATUS

REQUEST_SUBMIT_BATCH_JOB

REQUEST_STEP_COMPLETE

Slurm enhancements for High-throughput

18

• Enhanced rpc_queue logic is not perfect but greatly helps

• More deterministically spread locks time across the main areas of activities

• Jobs submissions

• Jobs states monitoring

• Jobs scheduling

• Jobs completion & epilog

• Queued RPCs still keep their

 TCP socket opened

• Need to properly configure queues tunable, especially max queue size (to trigger client backoff retries and/or abort)

• # of RPCs still used in parallel

• To help throttle down sched during incoming RPC peaks

• For non-rpc_queue aware RPCs

• For rpc_queue enabled RPCs while pushing them to their queue

Others.

Jobs

Sub.
RW

locks

Time

R.

locks
Job

Mon.

Jobs

Sched.
Jobs

Comp.

O.

J. M.

Jobs

Comp.

Jobs

Sched.

Job

Mon.

Jobs

Sub.

Jobs

Comp.

O. O. O. O.J. M.
J. M.
J. M.

Slurm enhancements for High-throughput

19

• Enhancement of the sched yield / stop thresholds conf

• Keep sched enabled under heavy yet manageable RPC load

• Make yield_rpc_cnt configurable, example :

• max_rpc_cnt = 150

• yield_rpc_cnt = 100

• (greater than the default max of 20)

• Other modifications have been made to help improving sched performances like

• Reducing the amount of time required per backfill job scheduling attempt taking some shortcuts

• May not apply to all workloads

• Reusing free resources as soon as possible even when nodes are completing

• to better handle large SMP nodes with single-core jobs

Incoming RPCs

Time

max_rpc_cnt

yield_rpc_cnt

20

Sched OkSched Ok Sched

Limited

Slurm at Jump Trading

Agenda

• Jump Trading HPC Overview

• Workload Characteristics and Slurm Migration

• Slurm features sponsored by Jump

• Slurm enhancements for high job throughput

• What’s next ?

20

What’s next ?

21

• SchedMD has integrated Jump rpc_queue enhancements in 24.05

• Still considered experimental and hidden

• A new rpc_queue.yaml file enables to configure the various per RPC type tunings

• Other improvements added and/or ongoing by SchedMD to further improve HT in 24.05 and 24.11

• SchedMD has reviewed some of our scheduling modifications

• And is actively working on alternatives to further improve performances in 24.11

 (part of the in-progress development sponsored by Jump)

• Additional local patches / features (not discussed in this presentation) maintenance

• Let’s discuss later if some of the following subjects matter to you

• Automatic association of a default Account to jobs belonging to undefined users

• Direct step-cancelation in OOM situations, cgroup(v1) time-sharing issues between jobs

• Opt-in memory overcommitment in jobs to use in best-effort more memory than allocated when possible

Slurm at Jump Trading

Q&A

22

Slurm at Jump Trading

Backup Slides

23

Slurm enhancements for High-throughput

24

• Context

• Slurm Controller is highly/multi-threaded

• Incoming RPCs threads

• Outgoing RPCs threads (agents for compute nodes actions requests)

• Backfill scheduler thread

• Main sched agent thread

• Main loop/house-keeping thread

• …

• Slurm internal data structures are protected by read/write locks

• Configuration / Jobs / Nodes / Partitions / Federations

• Locks ensure that states stay consistent across the variety of handled events

• Slurm threads acquire the read / write locks they need when needed

• Potentially preventing other concurrent components to do their job

• Potentially being delayed / starved by other components

C
o
n

f
–
 r
.w

.

J
o

b
s
 –

 r
.w

.

N
o
d

e
s
 –

 r
.w

.

P
a

rt
s
 –

 r
.w

.

F
e

d
s

–
 r
.w

.

BF

Sched

Main

Sched
Main

Loop

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Inc.

RPCs

Out.

RPCs

…

Slurm enhancements for High-throughput

25

• Context

• Internal Slurm components acquire the read / write locks they need

• Potentially preventing other concurrent components to do their job

• Potentially being delayed / starved by other components

• Internal Slurm components timing may vary depending on

• The size and complexity of the cluster

• amounts of resources / generic resources / GPUs / licenses / …

• The number of active/recent jobs

• in different states including running, pending, recently terminated

• The specificities of configuration

• # of partitions, # of various nodes weights, preemption / oversubscription options, …

Slurm enhancements for High-throughput

26

• Context

• Some potential large locks-time consumers are also natively throttled

• One-by-one serialization in various RPCs processing

• REQ_RESOURCE_ALLOCATION, REQ_SUBMIT_BATCH_JOB, REQ_KILL_JOB, …

• _throttle_start / _throttle_fini with extra usleep to help locks rotation between RPCs

• Bigger usleep when outgoing RPCs/Agents is high (LOTS_OF_AGENTS)

• Tend to increase the # of associated incoming RPC threads in case of burst

• Thus, triggering the yield/stop of the schedulers

• Other heavy locks-time consumers appear at some scales

• RPC_JOB_INFO / RPC_JOB_USER_INFO with (dozens of) thousands of jobs, …

Slurm enhancements for High-throughput

27

• Slurm in high-throughput mode is pushing the model to its limits

• High submission and/or completion rates means lot of incoming RPCs

• Schedulers yielding almost all the time

• Not enough locks-time to schedule enough jobs

• Global usage of resources lower than expected / possible

• Schedulers even with enough cycles, have difficulties to keep the

resources fully used under high turn-over pressure

Slurm enhancements for High-throughput

28

• rpc_queue enhancements at Jump

• New logic+tunings to add a credits|time-based concurrency model

• For each RPC type, the following tunings can be defined :

• max_per_cycle : # of RPCs that can be processed in a single batch

• max_usec_per_cycle : max amount of microsecs for a single batch

• yield_sleep : amount of microsecs to yield between 2 batches under pressure

• interval : amount of microsecs to sleep between 2 batches with no pressure

• max_queued : max # of pending RPCs in the queue before backpressure

• hard_drop : indicates if backpressure should trigger retries on client side or not

• Allow additional RPCs to be used with rpc_queue

• To cover observed major elements (exp: epilog completion)

Slurm enhancements for High-throughput

29

• Example of sched modification for HT on large SMP nodes

• Slurm Schedulers avoid scheduling new jobs on completing nodes

• Large SMP nodes tend to always be completing under HT situations

• Large SMP nodes are only eligible for jobs when not a single job is currently

ending / completing

• This can reduce global efficiency, as free cores/mem can not be used

• bf_ignore_cg_state to allow the backfill scheduler to schedule jobs on

completing nodes

	Sample Slides
	Slide 1: Slurm User Group – September 2024 Matthieu Hautreux, Larry Pezzaglia

	Generic Slides
	Slide 2: Jump Trading
	Slide 3: Slurm at Jump Trading
	Slide 4: Jump HPC Fabric
	Slide 5: Multi-fabric
	Slide 6: Multi-site
	Slide 7: Slurm at Jump Trading
	Slide 8: Workload Characteristics
	Slide 9: Workload Characteristics
	Slide 10: Slurm Migration Playbook
	Slide 11: Slurm at Jump Trading
	Slide 12: Sponsored Features
	Slide 13: Sponsored Features
	Slide 14: Sponsored Features
	Slide 15: Slurm at Jump Trading
	Slide 16: Slurm enhancements for High-throughput
	Slide 17: Slurm enhancements for High-throughput
	Slide 18: Slurm enhancements for High-throughput
	Slide 19: Slurm enhancements for High-throughput
	Slide 20: Slurm at Jump Trading
	Slide 21: What’s next ?
	Slide 22: Slurm at Jump Trading
	Slide 23: Slurm at Jump Trading
	Slide 24: Slurm enhancements for High-throughput
	Slide 25: Slurm enhancements for High-throughput
	Slide 26: Slurm enhancements for High-throughput
	Slide 27: Slurm enhancements for High-throughput
	Slide 28: Slurm enhancements for High-throughput
	Slide 29: Slurm enhancements for High-throughput

