*

Canadian HPC as a Service

SLUG 24 Sep. 12-13 2024

Félix-Antoine
Fortin

Principal developer of Magic Castle
Digital Research Alliance of Canada

Director of software development
Calcul Québec

felix@calculguebec.ca

UNIVERSITE

LAVAL

mailto:felix@calculquebec.ca

Magic Castle - Canadian HPC as a Service

1. Genesis
2. Technical overview
3. Variety of use cases

Magic Castle
Genesis

High Performance Computing (HPC)
Research infrastructure landscape in Canada

® Data centre

- Local team

©@ : ' /%ACENET
° : . J ® / eeeeeeeeee discovery

®
~ZFWES TR G e CQ
2 C te+Calcul Calcul Québec
om%lnf::lrioc1 a2 @ e
Digital Research Alliance de recherche

Alliance of Canada numeérique du Canada

High Performance Computing (HPC)
Research infrastructure landscape in Canada

150 workshops 95+
[year % usage

6

How to train users at scale without
impacting research?

Design an accessible tool for learning HPC

e Focus on recreating the Alliance HPC environment
e Include key features:
o Slurm
o Scientific software stack
o GPU support
e Minimal IT administration knowledge required
e Quisk setup - few minutes

We want accessible, inexpensive sandbox environments,
designed to facilitate teaching to audiences of various sizes.

It should be as easy as Legos...
for adults.

Open source infrastructure-as-code
aiming to reproduce the HPC user
experience in the cloud

Technical Overview

Imagine you are a wizard and you want to build a
new castle.

You don’t know much about building castles
and/or you already have enough on your plate
defeating dark forces.

If only there was someone able to take care of it
all for you...

Part architect : Part foreman :

e Manages the
construction site

e Monitors and fixes
problems regularly

e Puts your needs in writing
e Don’t need a dungeon
right now? Can close it
down temporarily

With the best social skills! Will set up your
castle anywhere

Design choices ‘

e Infrastructure: 100% Terraform

o No CLI or wrapper, no API interaction

o A single interface to interact with all major cloud providers
e Configuration: cloud-init and Puppet

o No knowledge of Puppet is required. The agent is autonomous.
e Scheduler: Slurm

o Support dynamic nodes

o Main scheduler used by the Alliance in Canada.

Design choices ‘

e Cloud providers: AWS, Azure, Google, OpenStack, OVH
o Other providers can be added by following the documentation

e Provider agnostic autoscaling
e Curated solution that still allows customization

o via input parameters and YAML file

https://qithub.com/computecanada/magic_castle

https://github.com/ComputeCanada/magic_castle/blob/main/docs/design.md
https://github.com/computecanada/magic_castle

i
rsyslog |
i

NAT Router
o>

|
=
[

ap

volume

[} Ip address

\:| instance

1
i
i
1
~~~~~~~ ’{ rsyslogd

HTTPS SSH Globus
4 y login1 security group
[ Apache J [ sshd J { MyProxy ]
_____________
[JupyterHub] [ fail2ban } [ GridFTP ] |
|
””””””””” [ puppet } { consul } :
|
|
|
_{ (] o D subnet :
|
|
_________________ |
" L |
mgmt1 node1 nodeN |
|
] [ FreelPA J puppet puppet :
E=1 D |
|
puppet } [puppetserver} |
|
} [ squid } - - |
jupyterhub jupyterhub |
singleuser singleuser |
consul } [ mokey ] T |
: NFS mount ? :
h nfs-export
I —— | SSE——— Em—— ]
Iproject

s
i

i e B

openstack.

Nz
OVHcloud

slurm

workload manager

W freelPA

identity | policy | audit

rN
\A\) APPTAINER

globus
- ©

jupyterhub
S’



Over 3000 scientific software are one
‘module load” away thanks to

Digital Research
Alliance of Canada <PEESSI

EEEEEEEEEEEEEEEEEEEEEE
e Joyl

Users can also install software using

@ Spack




o 8

How does it
work?




apply

HashiCorp

What is Terraform? ..’ Terraform

Terraform is an infrastructure-as-code software tool.
Users define and provide data center infrastructure
using a declarative configuration language(HCL).

It supports a number of cloud infrastructure providers
such as AWS, Microsoft Azure, Google Cloud
Platform, and OpenStack.



How does it work?

CLI aws
SN
3 | I
[
o
| - - ° g mQ
Practitioner Infrastructure . =
as Code
—b E

3
®

source: https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code



https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code

resource "openstack compute instance v2" "mgmt0l"

name = "mgmtOl1l"

flavor_ id = "p4-6gb"

key pair = "ssh-ed25519 ..."

security groups = ["default"]

block device {
image name = "Rocky-8"
source_ type = "image"
volume size = "50"
boot index =0
destination_ type = "volume"

true

delete on termination




# IaC to create a Kubernetes cluster in GCP
module "gke" {

source = ", .."

project id = "<PROJECT ID>"
name = "gke-test-1"
region = "us-centrall"
zones = ["us-centrall-a"]
network = "vpc-01"

http load balancing = false




apply

@00
S terraform apply

Terraform will perform the following actions:

Do you want to perform these actions?
Enter a value: yes

o




'ﬂ

HashiCorp

’ Terraform

'n

The infrastructure is defined in a main Terraform module. Each cloud
provider has its dedicated main module:

dWS

A

a

openstack.

N
OVHcloud




'ﬂ

The main modules share common inputs:

common/variables.tf

v

v v

v

aws

A

i
el
openstack.

W
OVHcloud




&R

And common outputs:

common/variables.tf

v

v

\J

v

aws

A

3 openstack.

W
OVHcloud

A

\

A

\

common/outputs. tf




These common
inputs create an easy
to use interface
without vendor
lock-in.




source
config git url

config version

cluster name

main.tf

" /aws n

"14.0.0"

"phoenix"

domain = "your-domain-name.cloud"
image = "ami-09ada793eeal559%e6"
instances =
mgmt = type = "t3.medium", count =
login = type = "t3.medium", count =
node = type = "t3.medium", count =
volumes =
nfs =
home = { size = 100 }
project = { size = 500 }
scratch = { size = 500 }

1, tags
1, tags
10, tags

[Ilmgmt 1] ,
[II login" ,
["node"]

1] puppe t n ’
"public",

"https://github.com/ComputeCanada/puppet-magic castle.git"

Ilnfsll] ,

n proxy n ]




source
config git url

config version

cluster name

main.tf

" /gcpu

"14.0.0"

"phoenix"

domain = "your-domain-name.cloud"
image = "rocky-8-gcp-optimized"
instances =
mgmt = type = "n2-standard-2", count
login = type = "n2-standard-2", count
node = type = "c3-standard-8", count
volumes =
nfs =
home = { size = 100 }
project = { size = 500 }
scratch = { size = 500 }

1, tags
1, tags
10, tags

[llmgmt n ,
[II login" ,
[llnodell]

1] puppe t n ’
"public",

"https://github.com/ComputeCanada/puppet-magic castle.git"

"nfs“] ,

n prOXY n ]




To facilitate the
support of multiple
providers, the inputs
are transformed by
common submodules.



Each main module uses 3 common sub-modules:

common/variables. tf common/design

A

ﬁ ' - common/configuration

[*
" =
+

v

common/outputs. tf common/provision




'ﬂ

design sub-module transforms the inputs into maps used to

generate the resources specific to each provider:

Vs

-

var.cluster name

~N

J

Vs

var.domain

~N

var.instances

var.volumes

common/design

<

-

out.instances

~

out.volumes




aws/infrastructure.tf

module "design" {
source = "../common/design"
cluster_name var.cluster_name

domain = var.domain
instances = var.instances
pool = var.pool
volumes = var.volumes

firewall_rules = var.firewall_rules

resource "aws_instance" "instances" {
for each = module.design.instances_to build
instance_type each.value. type
ami = lookup(each.value, "image'", wvar.image)




gcp/infrastructure.tf

module "design" {

source = "../common/design"
cluster name = var.cluster name
domain = var.domain
instances = var.instances
pool = var.pool

volumes = var.volumes

firewall_rules = var.firewall_rules

resource "google compute instance" "instances" {
for each = module.design.instances_to build
machine type = each.value. type
project = var.project




'ﬂ

configquration sub-module creates the cloud-config file (user_data).
This file configures SSH access and bootstraps Puppet on first boot.

N
[ var.instances

out.user_data

.
(. J
[ ... common/configuration
J

out.hostkeys

[ var.config version
- out. terraform data




puppet.yaml

#icloud-config

mounts:

- [ ephemeral0, /mnt/ephemerall ]

users:

- name: ${sudoer username}

groups: adm, wheel, systemd-journal
homedir: /${sudoer username}
selinux user: unconfined u
sudo: ALL=(ALL) NOPASSWD:ALL
ssh_authorized keys:

%
- ${key}
%
runcmd:
- sed -i '/HostKey \/etc\/ssh\/ssh host ecdsa key/ s/*#*/#/' /etc/ssh/sshd config
- chmod 644 /etc/ssh/ssh _host * key.pub
- chgrp ssh _keys /etc/ssh/ssh _host * key.pub
%

# Install Java 11 and puppetserver
- dnf -y install java-ll-openjdk-headless puppetserver-7.14.0




aws/infrastructure.tf

module '"configuration" ({
source = "../common/configuration"
inventory local.inventory
config git url var.config git url
config version = var.config version

resource "aws_instance" "instances" ({
user data = module.configuration.user data[each.key]




'ﬂ

provision copies the state (instances, #cpus, #gpus, volumes, etc.)
via SSH to the Puppet server as a YAML file (terraform data.yaml).

var.instances -

provisioner file
-

common/provision -

remote-exec
g

var.hieradata




terraform data.yaml

"node4d":
"hostkeys":
"ed25519": ssh-ed25519 ..
"rsa": ssh-rsa ..
"id": "droid-node4"
"local ip": "10.0.0.11"

mww

"public ip":

" specs n" : { n cpus " : "2" , "gpus " :

" tags " : [ " node n" , "pool " ]

0,

"ram" :

H8000H

}




Eif(hemlo'r;'aform D) @ D) } puppet

terraform data.yaml



configure

Puppet manages the configuration

J:::!Mﬁf E\"\

/ = |
| B - [T
, ;




main.tf

instances =
mgmt = type = "t3.medium", count = = ["mgmt", "puppet", "nfs"] ;,
login = type = "t3.medium", count = = ["login", "public", "proxy"] ’
node = type = "t3.medium", count = = ["node"]

The role of an instance is
defined by its tags.




data/site.yaml

magic_castle::site::tags:
login:

- motd
- profile: :fail2ban
- profile: :slurm: :submitter
- profile::ssh::hostbased auth::client
- profile: :nfs
- profile: :software stack

ot - Tags are
- mysql: :server

- prometheus: :server EifSES()(:iEitEB(j

- prometheus: :alertmanager

- profile::metrics::slurm exporter \A/itf} Ea IiE;t ()f

- profile: :rsyslog: :server

- profile: :squid: :server
- profile: :slurm: :controller F)LJF)F)EBt
- profile: :slurm: :accounting
- profile: :accounts (:IEaESE;EBE;-
- profile: :nfs
- profile: :users::1ldap
node:
- profile: :gpu
- profile: :jupyterhub: :node
- profile: :slurm: :node
- profile::metrics::slurm job exporter
- profile::nfs::client
- profile::software_stack




Puppet configuration customization: YAML

Magic Castle configuration is done entirely through Puppet classes.
There are over 40 classes that can be customized.

Customization can happen before a cluster is launched or after.
New tags can also be added or old tags can be redefined.

profile: :users::ldap: :users:

alice:

groups: ['engineering']

public keys: ['ssh-rsa ...

profile::fail2ban: :ignoreip

132.203.0.0/16

user@local’ 'ssh-ed25519 ...']



https://github.com/computeCanada/puppet-magic_castle

4;‘7 Autoscaling




HashiCorp

"’ Terraform

Autoscaling with Terraform Cloud

e Terraform CLI runs in a cloud
e Asingle API for Slurm to interact with

Terraform Cloud is available as a hosted service at
https://app.terraform.io.



https://app.terraform.io

Autoscaling

.4

| .

S

£ login
C
L
o

-

a g

yJomiau ajearid

main.tf

instances =

type = "n2-standard-2"

count = 1

tags = ["mgmt", "puppet",
login =

type = "n2-standard-2"

count = 1

tags = ["login", "public",

I

node =

type = "n2-standard-2",

llnfsll]

Ilproxy Il]




Autoscaling: resume

resume ‘
node[X-Y]

autoscale

workload manager

mgmt

3 # Terraform Cloud
% API

2

>

aws
Q 3 A create

instances
ﬁ E \h
openstack. OVHcloud
node provider




Autoscaling: suspend

idle
timeout

workload manager

mgmt

...
E===E suspend ‘
slurm node[X-Y]

autoscale

HashiCorp

# Terraform Cloud

destroy
instances

=) v
nstack OVHcloud

provider




(‘5 > The autoscaling logic is cloud-agnostic and is
expressed in 200 lines of Python.

—=
-

f? > The APl token requires only 2 permissions:
, modify a variable and create a plan.

@%p» > Ihecompute nodescanbe heterogeneous
| (GPU, x86, ARM64). Slurm determines which
nodes to power-up based on the job queue.



MIG Configuration
with Cloud Nodes




MIG Configuration with cloud nodes

Problem:
e To configure MIGs in Slurm, specify AutoDetect=nvml in gres.conf
e But AutoDetect cannot be used with cloud nodes.

Solution:
1. Define MIG Profiles in Terraform (main.tf)
2. [compute] Puppet installs NVIDIA drivers
3. [all] Puppet generates the slurm.conf from terraform_data.yaml
4. Puppet generates the gres.conf

o [controller] using the information from terraform_data.yam|
o [compute] using nvidia_gres.sh which is based on nvidia-smi
5. [compute] Puppet uses nvidia-mig-parted to apply config

Combined with autoscaling, a user can request a specific MIG profile


https://github.com/ComputeCanada/puppet-magic_castle/blob/main/site/profile/templates/slurm/nodes.conf.epp
https://github.com/ComputeCanada/puppet-magic_castle/blob/main/site/profile/files/slurm/nvidia_gres.sh
https://github.com/NVIDIA/mig-parted
https://slurm.schedmd.com/gres.html#MIG_Management
https://slurm.schedmd.com/gres.conf.html#OPT_AutoDetect

main.tf

instances =
gpu-sm =
type = "gpu32-240-3450gb-al100x1",
count = 5,
tags = ["node", "pool"],

mig = { "lg.5gb" = 7 }

gpu-md =
type = "gpu32-240-3450gb-a100x1",
count = 5,

tags = ["node", "pool"],
mig = { "2g.10gb" = 2, "3g.20gb"

Il
[
—




Use case 1:
Education



Since Magic Castle initial release in 2018

1k+ workshops

and university courses have used Magic Castle to
teach advanced research computing.



A regional partner of the

Digital Research
Alliance of Canada

Calcul Québec

Uses Magic Castle as the hands-on
exercise platform for their entire
2023-2024 training program

Provides and administers Magic
Castle clusters to graduate courses
from various disciplines: Al,
bioinformatics, neuroscience,
chemistry

magic_clusters | Private
Magic Clusters recipes for various workshops

@HcL w1 BMT ¥o (Oo Mo

mc-infra-bif4007 | Private

mc-infra-chem505 | Private

Maf
mc-infra-bif4000 | Private

( X

M4

mc-infra-bft710 | Private

[ ]
@HcL o Fo (o %0 Updated last week



https://drive.google.com/file/d/1FgtOjhnr7txCtoYnhRY2x44ltfaJo5-Z/view

Use case 2:

Self-service HPC cluster
creation platforms



X  New Deployment: Magic Castle, Digital Research Alliance ¢ JETSTREAM 2/ TRA220028

o Parameters e Review & Deploy
Choose Region
1§} A¢

eLstream

Cluster Name *

my-private-cluster

‘ (D Windows server images are not yet supported.
Boot image name

Featured-RockyLinux8 ¢

# of mgmt nodes Size of mgmt nodes

1 m3.medium v
M H C tl H H t t d H CACAO # of login nodes Size of login nodes

agic Castle is integrated in 1 ,

and can be launched eas||y in

1 m3.medium v
Jetstream2 cloud.

100 100 100

# of guest users

5 password for guest users

START OVER NEXT

https://docs.jetstream-cloud.org/general/virtualclusters
https://github.com/edwins/magic castle
https://docs.jetstream-cloud.org/ui/cacao/deployment magic castle/



https://docs.jetstream-cloud.org/general/virtualclusters
https://github.com/edwins/magic_castle
https://docs.jetstream-cloud.org/ui/cacao/deployment_magic_castle/

Digital Research
Alliance of Canada

Digital Research Alliance of Canada
sponsors the development of

Magic Castle own platform for
spawning virtual HPC clusters:
MC-Hub

https://github.com/computeCanada/mc-hub

Magic Castle Creation

General configuration

phoenix

Domain
calculquebec.cloud

Image

Cent0S-7-x64-2019-07

Login

Compute

Used Instances

p4-6gb

€2-7.5gb-31

p8-12gb

€2-15gb-31

c4-15gb-83

c4-30gb-83



https://github.com/computeCanada/mc-hub

Use case 3:
Scientific platforms



uses Magic Castle as its platform to compile
and test software built with EasyBuild before

E E S s I deploying them on CVMFS

Reviewers

Build nodes

EESSI

Contributors software-layer Submit build
‘ J Create PR jobs o m—
(automated) _
KE/} Testing
%% EasyBuio
bot ReBiFrame

https://www.eessi.io/



https://www.eessi.io/

SecureData 4 Health: cancer patient genome sequencing

SecureData

Elastic HPC 4Health

VM Pool
Dynamic Allocation

Research Hospital Clinical Research Genomics Platform

https://www.sd4health.ca/

1PB All SSD CephFS \
Encrypted Access to Dat

e Single infrastructure - OpenStack
e Fully isolated project per research client
e Fulfilled hospitals cybersecurity
requirements
e One Magic Castle cluster per client
e Client example:
Marathon of hope Cancer Network
o  Comparison of healthy vs
cancerous cells
o 2000 cores
o 120k jobs so far in 2024

.~ Canadian Centre for w B e
Computat!onal McGuall

LINLN BR.SITT Y
Genomics


https://www.marathonofhopecancercentres.ca/
https://www.sd4health.ca/

National Microbiome Data Collaborative EDGE platform

VM
MySQL

\

/ Magic Castle

(" Login Node

>

\ e “i“ »

@ Cr&ﬁWeIl Server
©

Management Node
® slu

rm

O)

Worker Node

jobs

Cromwell workﬂowﬂm

4

https://nmdc-edge.org/home

Allows researchers to process data
with standard NMDC
bioinformatics workflows
Workflows are configured through
the platform

The jobs are scheduled in a Magic
Castle cluster via Cromwell Server
Magic Castle cluster is spawned
via CACAO in Jetstream?2

1% Los Alamos

NATIONAL LABORATORY


https://nmdc-edge.org/home

Simple to use
Batteries included:

software, scaling, MIG, etc.

% Ideal software environment
to integrate HPC into
platforms and for teaching

* %

cloud-agnostic and
open source

https://www.github.com/computecanada/magic_castle



https://www.github.com/computecanada/magic_castle

