
Gaining more control over node scheduling
with the Topology/Block Plugin
Vasileios Karakasis
Felix Abecassis
Craig Tierney
Douglas Wightman

Slurm User Group '24 | September 2024

1

Optimizing System Usage By Understanding Network Topology

• Slurm has provided many methods to optimize scheduling with understanding of the network topology
• Hierarchical Networks (ex: fat-tree, dragonfly+)
• Three-dimensional Topologies (ex: torus)

• These plugins help Slurm select the “best” nodes at the time.
• It does not implement a hard requirement or guarantees regarding node selection

Fat Tree example is from: https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
Dragonfly example is from: https://docs.nvidia.com/networking/display/mlnxgwv814000/deployment+scenarios

2

https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/networking/display/mlnxgwv814000/deployment+scenarios

Limitations to the Topology Plugins

• The plugins cannot guarantee any specific behavior.

• In the rail-optimized fat-tree below (8 rails per server), the topology plugin (topology/tree) cannot guarantee that a
group of nodes would be allocated to a job that are connected to a single leaf.

• For achieving peak performance, this level of control is sometimes necessary

3

NVIDIA GB200 NVL72

• NVIDIA GB200 NVL72 is NVIDIA’s scale out product
• “The system is the data center”

• NVIDIA GB200 NVL72 Rack
• 18 nodes, each with 2 Grace CPUs and 4 Blackwell GPUs
• NVLink-Chip-to-Chip (C2C) interface between CPU and GPU

provides coherent access to a larger memory space.
• Each GPU has a dedicated CX7

• All the GPUs in the tack are connected via external NVLink
• Each GPU has 18 NVLink ports @ 100 GB/s each
• The NVLink network provides several benefits

• ~ 5x increase in bandwidth over InfiniBand
• GPUs can directly access the memory of other GPUs

• Groups of NVL domains can be connected via InfiniBand or
Ethernet

4

Complexities of Scheduling Systems with multiple networks

• While not the most optimal, applications can communicate across InfiniBand
• However, applications relying on maximum bandwidth between GPUs must be scheduled within a single NVLink

domain
• Hybrid communication methods are possible (fast over NVLink, slow over InfiniBand) but allocations must be grouped as

required

• Applications requiring maximum bandwidth between
GPUs
• Tensor parallel communications in LLM models
• Large model AI inference need large GPU memory footprints

to achieve peak performance
• Fast Fourier Transform
• AI Recommender

Image from Training Deep Learning Models at Scale: How NCCL Enables Best Performance on AI Data Center Networks
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/

5

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/

Topology/Block

• Topology/block plugin was introduced in Slurm 23.11
• The plugin was updated and redesigned in 24.05

https://slurm.schedmd.com/topology.conf.html#SECTION_topology/block

• The Block plugin provides hierarchical scheduling across blocks of nodes

• For the example system shown, the block plugin could be defined as:

###
Slurm's network topology configuration file for use with
the topology/block plugin
###
BlockName=block1 Nodes=node[01-04]
BlockName=block2 Nodes=node[05-08]
BlockName=block3 Nodes=node[09-12]
BlockName=block4 Nodes=node[13-16]
BlockSizes=4,8

6

https://slurm.schedmd.com/topology.conf.html#SECTION_topology/block

Topology/Block – What is a block?

• A block is a consecutive range of nodes

• Blocks cannot overlap with each other

• All nodes in a block are allocated to a job before the next block is used

• The planning block size is the smallest block size configured
• In the example on the previous slide, the planning block size is 4 nodes

• Every higher block level size is a power of two than the previous one

Block 1 + Block 2 + Block 3 + Block4

Block 1 + Block 2 Block 3 + Block 4

01 02 05 06 09 10 13 14

03 04 07 08 11 12 15 16

Block 1 Block 2 Block 3 Block 4

7

Rules and Strategies for Defining Blocks

• Block is defined as a list of non-overlapping Nodes with a
BlockName
• Not all nodes need to be listed as apart of blocks (and will be

scheduled without block consideration, ex. CPU nodes)
• Only one topology plugin can be specified at the time

• BlockSizes defines the sizes of blocks
• First block size is the planning block size
• Higher level blocks must be a power of two of the planning

block size

• The number of nodes in a block can be greater than the
size of the planning block

• Blocks may have different sizes

• It is assumed that nodes are always allocated as
--exclusive (never shared)

###
Slurm's network topology configuration file for use with
the topology/block plugin
###
BlockName=block1 Nodes=node[01-04]
BlockName=block2 Nodes=node[05-08]
BlockName=block3 Nodes=node[09-12]
BlockName=block4 Nodes=node[13-16]
BlockSizes=4,8

8

Control node allocation

--segment=<nodes>

• Specify the number of nodes to group together

• The size of the segment must be less or equal to the planning block size

• Use of --segment does not guarantee that segments will be placed on different blocks

--exclusive=topo

• Jobs can request that no other jobs be placed on the same block

• When combined with --segment, it does not guarantee that segments will be placed on different blocks

• This is useful for benchmarking and other application performance work

• When used, nodes left idle are not accounted for against the job

Job requests with sbatch

9

Controlling Job Placement Examples

• We will walk through some examples on the expected behavior of the block scheduler

• The specs on the example system are:
• Nodes are connected by InfiniBand and NVlink
• 18 nodes per NVLink Domain

• We are only defining a block level to represent the entire NVLink domain
• There is no higher level block definition for the IB network.

• Example topo.cfg
##
Slurm's network topology configuration file for use with the
topology/block plugin
##
BlockName=block01 Nodes=node[001-018]
BlockName=block02 Nodes=node[019-036]
BlockName=block03 Nodes=node[037-054]
BlockName=block04 Nodes=node[055-072]
BlockName=block05 Nodes=node[073-090]
BlockName=block06 Nodes=node[091-108]
BlockName=block07 Nodes=node[109-126]
BlockName=block08 Nodes=node[127-144]
BlockSizes=18

The following examples do not show the definitive choices of what the Slurm scheduler will do.
They do represent one version of the ‘best case” that the topology/block plugin will do.10

sbatch -N18 …

Scheduling Examples
Allocate job which is the size of the planning block on an empty system

Block01 Block02 Block03 Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

X drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

11

Full block allocated, any block could be selected

sbatch -N36 …

Scheduling Examples
Allocate job larger than the planning block size

Block01 Block02 Block03 Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

X drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

12

Two blocks allocated, not consecutive since only single
BlockSizes specified. BlockSizes=18

sbatch -N24 …

Scheduling Examples
Allocate job larger than the planning block size

Block01 Block02 Block03 Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

X drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

13

Full block is filled before 2nd block is used

sbatch -N18 …

Scheduling Examples
Allocate job that is the size of the planning block with existing jobs

Block01 Block02 Block03 Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

X drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

14

Job has to fit onto full block

sbatch -N18 …

Scheduling Examples
Allocate job that is the size of the planning block with existing jobs, with unavailable nodes

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

15

Job has to fit on full block, with no down/drained nodes.

sbatch -N24 --segment=12 …

Scheduling Examples
Allocate job with --segment, with unavailable nodes

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

16

With --segment=12, job can be placed on blocks with
existing jobs

sbatch -N12 --segment=6 …

Scheduling Examples
Allocate job with --segment, with unavailable nodes

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

17

Two segments may be placed on the same block

sbatch -N12 --exclusive=topo …

Scheduling Examples
Allocate job with --exclusive=topo

DR

Block01
DR DR DR

Block02 Block03

DR

 XXX XXX

XXX XXX XXX

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

18

With --exclusive=topo, job must be placed on block with
no other jobs.

sbatch -N12 --segment=6 --exclusive=topo …

Scheduling Examples
Allocate job with --exclusive=topo and --segment

DR

Block01
DR DR DR

Block02 Block03

DR

 XXX XXX

XXX XXX XXX

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

19

With --exclusive=topo, segments from the same job may
still be placed on the same block

sbatch -N24 --segment=12 --exclusive=topo …

Scheduling Examples
Allocate job with --exclusive=topo and --segment

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

20

With --exclusive=topo and --segment, blocks are not
shared but segments can fit where nodes may be drained

sbatch -N36 --exclusive=topo …

Scheduling Examples
Block scheduling can lead to additional fragmentation

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

21

This job cannot be scheduled since there not 2 full blocks
available for scheduling.

High Availability Scheduling Options

• Option 1: A job can use --segment and not depend on every node in a block being available
• Pro

• Users are given more flexibility to ensure their jobs will run

• Unused nodes can be used by small jobs

• Cons
• Using --segment means higher order block sizes beyond the planning block size are not supported

• Option 2: Set BlockSizes that are smaller the the full node range. Ex:

BlockName=block01 Nodes=node[001-018]
BlockSizes=16

• Pros
• Use is transparent to the users

• Unused nodes can be used by smaller jobs

• Cons
• The user may need to know the size of the block sizes to get the behavior they want
• This prevents all of the nodes in the NVLink domain from being used by a single job

22

sbatch -N48 --segment=16 …

Scheduling Examples
HA-like options using the block scheduler

DR

Block01
DR DR DR

Block02 Block03

DR

Block04 Block05 Block06 Block07 Block08

Color Definition

Idle

DR drained/down or otherwise unavailable

Example job

Other Unique colors per existing job

23

Using --segment, multi-block jobs can fit around downed
and allocated nodes

Conclusions & Next Steps

• The Topology/block plugin guarantees that nodes will be allocated based on the defined network topology

• Applications requiring maximum bandwidth and shared memory access across GPUs are guaranteed to get an optimal
placement

• The --segment option can mitigate the fragmentation inherent to block scheduling and increase cluster utilization

• The --segment option gives flexibility to users in the trade-off between absolute performance and quicker job
scheduling times

Next steps:

• Continue to understand the behavior of the plugin and better optimize its use and overall system utilization

• Continue to work with SchedMD to add more features to the plugin to improve flexibility and utilization

24

Acknowledgements

● Thanks to SchedMD collaborators
○ Tim Wickberg
○ Jess Arrington
○ Ben Roberts
○ Dominik Bartkiewicz
○ And the rest of the SchedMD team that made this happen

25

26

