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What is Slinky?

A collection of projects and initiatives to enable Slurm on Kubernetes:

● Slurm-operator
○ Manage Slurm nodes in Kubernetes

● Slurm-bridge
○ Enable Slurm scheduling of Kubernetes Pods

● Kubernetes Tooling
○ Helm Charts
○ Container Images

● Future work



Cloud Native

● Underlying software is immutable
● Users are not systems experts, do not 

think in terms of parallel
○ Limited tolerance for complexity

● Users share nodes
○ Can introduce jitter
○ Can blow through bandwidth

● Assumption of heterogeneous nodes
● Not a ton of attention given to network 

topology

HPC vs. Cloud Native - Historical Assumptions

HPC

● Underlying software is mutable
○ Users assume fine-grained control

● Users are often systems experts that 
understand infrastructure

○ Have a tolerance for complexity
● Access to compute handled by a 

resource manager or scheduling system
● Users own the node entirely during 

computation
● Assumption of node homogeneity



Domain Pools

● Kubernetes manages its nodes, 
running a kubelet

● Slurm manages its nodes, running 
a slurmd

● Slinky tooling will manage the 
overlapping nodes
○ Slurm Bridge



Why Slurm Bridge

● Kubernetes lacks fine-grained control of native resources (CPU, Memory)
○ HPC and AI training workloads are inefficient
○ Need to build the infrastructure to get this capability

● Ability to have fast scheduling that is not possible in kubelet
● Ability to use both Kubernetes and Slurm workloads on the same set of nodes

○ Do not need to separate the clusters!



Slurm Bridge



Requirements

● Can run Slurm and Kubernetes workloads on pools of nodes
● Slurm bridge will translate resource requirements for Kubernetes workloads and make sure 

appropriate resources are available and schedule within the cluster
● Handle Device Plugins, such as GPUs
● Will filter nodes that Slurm is not to manage, through the current set of labels provided
● Will filter pods out that we do not handle, like pods on control plane, via designated 

namespaces
● Will have an allow-list of namespaces we handle



Restrictions

● Each node can run Slurm or Kubernetes workloads, not both concurrently
○ The kubelet will manage on-node resource assignment for its workload 
○ The slurmd will manage on-node resource assignment for its workload

● Configure Slurm with Multi-Category Security (MCS)
○ Use to enforce workload exclusivity (e.g. Kubernetes vs. Slurm workload)
○ Requires Slurm Accounting for user, account information

● Configure our plugin as Kubernetes scheduling profile
○ Our scheduling plugin will take control of all workloads in allow-list namespaces
○ The Default Scheduler will handle all other workload

● Device plugins will be supported, but not Dynamic Resource Allocation (DRA)
○ DRA is still in alpha and has a volatile API, currently



Big Picture

● Slurm uses Multi-Category 
Security (MCS) to label nodes 
with Kubernetes or Slurm 
workload, to enforce node 
workload exclusivity

● Slurm cluster can still run 
workloads on nodes with only 
a slurmd (no kubelet)

● The Admission Controller 
makes sure pods use the 
Slurm Scheduler Plugin



Slurm Bridge

● Responsible for managing Slurm as the 
source of truth and enforcing scheduling 
decisions from Slurm

● Slurm Scheduler Plugin
○ Implements the Kubernetes 

Scheduler Framework
○ Hooks into the Kubernetes 

scheduling API to utilize the Slurm 
Control Plane to make scheduling 
decisions

● Slurm Workload Controller
○ Reconciles pod drift/desync using 

Slurm as the source of truth for 
Slurm scheduled workloads
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Slurm Scheduler Plugin



Kubernetes Scheduler Framework



Slurm Scheduler Plugin

● Implement Bind() Interface
● Translate Pod spec into 

Slurm job spec, and submit 
as a placeholder Slurm job

● Bind pod to Kubernetes 
Node based on Slurm node 
allocation, from Slurm job

● Let kubelet handle the pod 
initialization and resources



Slurm Scheduler Plugin - Sequence

● Translate a pod spec to Slurm job 
spec

● Submit a placeholder job in Slurm 
for the pod

● Bind the pod to a node, given 
where the Slurm job was allocated 
in Slurm

○ Slurm will only allocate the 
placeholder Slurm job on 
nodes with both a slurmd 
and kubelet



Slurm Workload Controller



Slurm Workload Controller - Sequence

● Slurm is the source of truth for 
Nodes that overlap between 
Kubernetes and Slurm

● Requires the Slurm Scheduler Plugin 
to schedule pods

● The Slurm Bridge will consider the 
allow-list namespaces, which it 
tightly manages



Future Work



Future Work

● Work with the Kubernetes community to be able to handle fine-grained control and 
understanding of native resources

● Be able to handle Dynamic Resource Allocation (DRA)
● Allow Slurm to schedule Kubernetes workloads without slurmd needing to run alongside 

kubelet



Questions?





Extended Reading



Slurm Attribute Mapping

● Want to allow pods to map into Slurm job settings for:
○ CPUs / Cores

■ Slurm manages Cores. Need to map to Cores.
○ Memory

■ Slurm only has a hard limit, not soft limit
○ GPUs

■ device-manager syntax only initially
■ DRA has separate (evolving) syntax we want to ignore for now

○ Optional, should use defaults from Slinky-Bridge configuration:
■ Slurm Account
■ Slurm User*

● Note: would need REST interface to run with root-level jwt to allow this to be 
manipulated. Running as a single service account would be preferable in phase 
1.

■ Slurm Partition
■ Slurm Constraints
■ Slurm Job Name
■ GRES


