
Slurm Bridge

Skyler Malinowski
Alan Mutschelknaus
Marlow Warnicke



What is Slinky?

A collection of projects and initiatives to enable Slurm on Kubernetes:

● Slurm-operator
○ Manage Slurm nodes in Kubernetes

● Slurm-bridge
○ Enable Slurm scheduling of Kubernetes Pods

● Kubernetes Tooling
○ Helm Charts
○ Container Images

● Future work



Cloud Native

● Underlying software is immutable
● Users are not systems experts, do not 

think in terms of parallel
○ Limited tolerance for complexity

● Users share nodes
○ Can introduce jitter
○ Can blow through bandwidth

● Assumption of heterogeneous nodes
● Not a ton of attention given to network 

topology

HPC vs. Cloud Native - Historical Assumptions

HPC

● Underlying software is mutable
○ Users assume fine-grained control

● Users are often systems experts that 
understand infrastructure

○ Have a tolerance for complexity
● Access to compute handled by a 

resource manager or scheduling system
● Users own the node entirely during 

computation
● Assumption of node homogeneity



Domain Pools

● Kubernetes manages its nodes, 
running a kubelet

● Slurm manages its nodes, running 
a slurmd

● Slinky tooling will manage the 
overlapping nodes
○ Slurm Bridge



Why Slurm Bridge

● Kubernetes lacks fine-grained control of native resources (CPU, Memory)
○ HPC and AI training workloads are inefficient
○ Need to build the infrastructure to get this capability

● Ability to have fast scheduling that is not possible in kubelet
● Ability to use both Kubernetes and Slurm workloads on the same set of nodes

○ Do not need to separate the clusters!



Slurm Bridge



Requirements

● Can run Slurm and Kubernetes workloads on pools of nodes
● Slurm bridge will translate resource requirements for Kubernetes workloads and make sure 

appropriate resources are available and schedule within the cluster
● Handle Device Plugins, such as GPUs
● Will filter nodes that Slurm is not to manage, through the current set of labels provided
● Will filter pods out that we do not handle, like pods on control plane, via designated 

namespaces
● Will have an allow-list of namespaces we handle



Restrictions

● Each node can run Slurm or Kubernetes workloads, not both concurrently
○ The kubelet will manage on-node resource assignment for its workload 
○ The slurmd will manage on-node resource assignment for its workload

● Configure Slurm with Multi-Category Security (MCS)
○ Use to enforce workload exclusivity (e.g. Kubernetes vs. Slurm workload)
○ Requires Slurm Accounting for user, account information

● Configure our plugin as Kubernetes scheduling profile
○ Our scheduling plugin will take control of all workloads in allow-list namespaces
○ The Default Scheduler will handle all other workload

● Device plugins will be supported, but not Dynamic Resource Allocation (DRA)
○ DRA is still in alpha and has a volatile API, currently



Big Picture

● Slurm uses Multi-Category 
Security (MCS) to label nodes 
with Kubernetes or Slurm 
workload, to enforce node 
workload exclusivity

● Slurm cluster can still run 
workloads on nodes with only 
a slurmd (no kubelet)

● The Admission Controller 
makes sure pods use the 
Slurm Scheduler Plugin



Slurm Bridge

● Responsible for managing Slurm as the 
source of truth and enforcing scheduling 
decisions from Slurm

● Slurm Scheduler Plugin
○ Implements the Kubernetes 

Scheduler Framework
○ Hooks into the Kubernetes 

scheduling API to utilize the Slurm 
Control Plane to make scheduling 
decisions

● Slurm Workload Controller
○ Reconciles pod drift/desync using 

Slurm as the source of truth for 
Slurm scheduled workloads

Kubernetes 
API

Slurm 
REST API

Slurm 
Scheduler 

Plugin

Slurm Bridge

Slurm 
Workload 
Controller



Slurm Scheduler Plugin



Kubernetes Scheduler Framework



Slurm Scheduler Plugin

● Implement Bind() Interface
● Translate Pod spec into 

Slurm job spec, and submit 
as a placeholder Slurm job

● Bind pod to Kubernetes 
Node based on Slurm node 
allocation, from Slurm job

● Let kubelet handle the pod 
initialization and resources



Slurm Scheduler Plugin - Sequence

● Translate a pod spec to Slurm job 
spec

● Submit a placeholder job in Slurm 
for the pod

● Bind the pod to a node, given 
where the Slurm job was allocated 
in Slurm

○ Slurm will only allocate the 
placeholder Slurm job on 
nodes with both a slurmd 
and kubelet



Slurm Workload Controller



Slurm Workload Controller - Sequence

● Slurm is the source of truth for 
Nodes that overlap between 
Kubernetes and Slurm

● Requires the Slurm Scheduler Plugin 
to schedule pods

● The Slurm Bridge will consider the 
allow-list namespaces, which it 
tightly manages



Future Work



Future Work

● Work with the Kubernetes community to be able to handle fine-grained control and 
understanding of native resources

● Be able to handle Dynamic Resource Allocation (DRA)
● Allow Slurm to schedule Kubernetes workloads without slurmd needing to run alongside 

kubelet



Questions?





Extended Reading



Slurm Attribute Mapping

● Want to allow pods to map into Slurm job settings for:
○ CPUs / Cores

■ Slurm manages Cores. Need to map to Cores.
○ Memory

■ Slurm only has a hard limit, not soft limit
○ GPUs

■ device-manager syntax only initially
■ DRA has separate (evolving) syntax we want to ignore for now

○ Optional, should use defaults from Slinky-Bridge configuration:
■ Slurm Account
■ Slurm User*

● Note: would need REST interface to run with root-level jwt to allow this to be 
manipulated. Running as a single service account would be preferable in phase 
1.

■ Slurm Partition
■ Slurm Constraints
■ Slurm Job Name
■ GRES


