

TrailblazingTurtle: A Comprehensive Web Portal for Maximizing HPC Resource Utilization

Simon Guilbault (simon.guilbault@calculquebec.ca)

Introduction

- HPC users struggle to fully use resources
 - Waste resources
 - Do not get the speedup they could have
- Solution
 - <u>TrailblazingTurtle</u>: A web portal to aggregate and present relevant information to users and staff
- Features
 - Job level monitoring
 - CPU, memory, GPUs, ...
 - Lustre IO
 - Top users stats
 - Job table (squeue alternative)
 - Account stats
 - Long stats retention
 - Public view: portail.narval.calculquebec.ca

Overall design

- Django web portal
 - Can filter the view for each user and allow staff to see everything
- Direct access to MySQL Slurmdb
- Metrics in Prometheus
 - Thanos for retention in S3
 - Slurm-job-exporter
 - Other exporters are optional
- Collect job scripts with a REST API
 - 23.02 added this feature natively

Jobs table

- Direct access to database
- Full text search
- Filter by state
 - Pending
 - Running
 - Completed
 - **OOM**
 - Failed
 - Timeout
 - 0 ...
- Order by

Show 10 v entries Search:								
Job ID	Status	Job name	Submit time	Eligible time	Start time	End time	Asked time	Used time
33610410	Pending	[redacted]	Aug 20, 2024, 12:45 PM	Aug 20, 2024, 12:45 PM	-	-	2 days	-
33410052	Running	[redacted]	Aug 19, 2024, 5:40 AM	Aug 19, 2024, 5:40 AM	Aug 19, 2024, 8:09 AM	-	2 days	1 day, 5 hours, 25 minute 43 seconds
33410030	Running	[redacted]	Aug 19, 2024, 5:40 AM	Aug 19, 2024, 5:40 AM	Aug 19, 2024, 8:09 AM	-	2 days	1 day, 5 hours, 25 minute 43 seconds
33272073	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 5:44 AM	-	2 days	1 day, 7 hours, 50 minute 32 seconds
33272074	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 5:48 AM	-	2 days	1 day, 7 hours, 46 minute 30 seconds
33272075	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 7:38 AM	-	2 days	1 day, 5 hours, 56 minute 47 seconds
33272076	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 8:09 AM	-	2 days	1 day, 5 hours, 25 minute 43 seconds
33272077	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 8:09 AM	-	2 days	1 day, 5 hours, 25 minute 43 seconds
33272078	Running	[redacted]	Aug 18, 2024, 12:31 PM	Aug 18, 2024, 12:31 PM	Aug 19, 2024, 8:09 AM	-	2 days	1 day, 5 hours, 25 minute 43 seconds
33272079	Canceled	[redacted]	Aug 18, 2024, 12:31	Aug 18, 2024, 12:31	Aug 19, 2024,	Aug 20, 2024,	2 days	1 day, 4 hours, 35 minute

8:09 AM

12:45 PM

47 seconds

PM

PM

Node states, events and jobs gantt-chart

'	Node	Start time	End time	Duration	Reason	
r	nc10307	2 days, 15 hours ago 🛈	2 days, 15 hours ago 🛈	0:21:05	Kill task failed	
r	nc10307	2 days, 15 hours ago 🛈	2 days, 15 hours ago 🛈	0:15:00	Kill task failed : Not responding	
r	nc10307	2 days, 15 hours ago 🛈	2 days, 15 hours ago 🛈	0:08:10	Kill task failed : Not responding	NF
r	nc10307	2 days, 10 hours ago 🛈	2 days, 10 hours ago 🛈	0:07:56	NHC: cvmfs, unable to read /cvmfs/soft.computecanada.ca/gentoo/2020/etc/host.conf : Not responding	
r	nc10307	2 days, 10 hours ago 🛈	2 days, 10 hours ago 🛈	0:04:47	NHC: cvmfs, unable to read /cvmfs/cvmfs-config.computecanada.ca/etc/cvmfs/domain.d/computecanada.ca.conf	

 \bigcirc

Data sources

- Mysql slurmdb
 - Read only access
- Prometheus
 - <u>node exporter</u>
 - <u>slurm-job-exporter</u>
 - Job level stats
- <u>slurm-exporter</u>
 - Account priorities, node down
- lustre exporter + lustre exporter slurm
 - Collect stats by job, and add username/group based on slurmdb
- redfish exporter
 - Power by node (Dell iDRAC)
- <u>pcm-sensor-server</u>
 - Intel only: L3 cache, IPC, NUMA and Memory bandwidth

Prometheus

- 1500 compute nodes (2000 nodes in total)
 - 250k metrics per second
 - 2 bytes per sample
 - 0.5MB/s -> 43 GB per day
- Aggregation using recorder rules
 - Sum per user, ...
- Production VM (1 per cluster)
 - ~6 cores
 - 70GB of ram
 - 350GB of disk, ~25 IOPS, 2 MB/s
 - 200Mb/s of network traffic
 - Local retention of a few days

Thanos

- Archival and aggregation of multiple clusters
- Compact up to 14 days chunks
- S3 storage (Ceph)
 - **30 TB**
- Removing some stats after 7 months
 - Rewriting blocks
 - 40 GB -> 10 GB

slurm-job-exporter

- Gather metrics within each cgroup created by Slurm to contain each job
 - o /sys/fs/cgroup/memory/slurm/uid_1000/job_42/
 - SLURM_JOB_ACCOUNT to get the account
 - CPU
 - Nanoseconds counter per core
 - Memory
 - Can measure the absolute peak, regardless of sampling frequency
 - Nvidia GPUs
 - DCGM and NVML
 - Process/threads count and paths within each job

```
# HELP slurm_job_memory_usage Memory used by a job
# TYPE slurm_job_memory_usage gauge
slurm_job_memory_usage{account="group1",slurmjobid="1",user="user1"} 1.634453504e+010
slurm_job_memory_usage{account="group2",slurmjobid="2",user="user2"} 8.271761408e+09
# HELP slurm_job_core_usage_total Cpu usage of cores allocated to a job
# TYPE slurm_job_core_usage_total counter
slurm_job_core_usage_total{account="group1",core="1",slurmjobid="1",user="user1"} 1.165134620225e+012
slurm_job_core_usage_total{account="group1",core="2",slurmjobid="1",user="user1"} 1.209891619592e+012
slurm_job_core_usage_total{account="group2",core="3",slurmjobid="2",user="user2"} 5.711518455e+012
```

CPU/Memory stats

CQ

GPU PCIe bandwidth

Note that this is from the perspective of the GPU

Note that this is from the perspective of the GPU

Aug 26, 2024

15.0

16:00

17:00

0.3GB/

0.2GB/

0GB/

-0.1GB/s -0.2GB/s -0.3GB/s

NVIDIA GPUs stats

- Using DCGM (NVML fallback)
 - SM active, SM occupied
 - FP64, FP32, FP16, Tensor
 - Memory used and bandwidth
 - Nvlink/PCIe bandwidth
 - Power

Aug 26, 2024

 "nvidia-smi -L" in each cgroup to map each GPU to a job

40 GB 35 GB 30 GB 22 GB 22 GB 0 GB 14:00 15:00 16:00 17:00 GPU 0 GPU

GPU Memory access cycle used

GPU Memory used

The ratio of cycles the device memory interface is active sending or receiving data

RX GPU (

RX GPU

- BX GPU

TX GPU 3

TX GPU 0 TX GPU 1 TX GPU 2

ith

GPU Memory used

A100 40GB -> 3g.20gb

NVIDIA MIG support

- DCGM is required
- Detect and assign stats from MIG to jobs
- Using stats to evaluate how to split them in production
 - 20% of nodes are splitted with MIGs

Top users

‡ Username	Account	Allocated 🕴 GPUs	Used GPUs	Fully used GPUs equivalent	Allocated cores	Used cores	Allocated memory	Max memory	Wasting
fast-anchovy	great-elk	125	116.0	2.3	500.0	127.36	4.29 TB	3.4 TB	GPUs
expert-mule	curious-koala	43	41.0	6.8	172.0	9.33	1.48 TB	247.54 GB	GPUs
immortal- aphid	polished- reindeer	36	31.0	14.8	432.0	68.32	4.81 TB	1.84 TB	ОК
gorgeous- walrus	dominant- heron	25	22.0	1.1	100.0	35.28	3.44 TB	768.48 GB	GPUs
closing- minnow	correct- oarfish	23	17.0	0.1	46.0	22.49	296.35 GB	130.15 GB	GPUs
regular-collie	clear-roughy	20	20.0	0.7	20.0	19.87	343.93 GB	84.97 GB	GPUs
magical- shiner	polished- reindeer	19	0	0	152.0	18.71	298.84 GB	248.95 GB	GPU ares totally unused
diverse-calf	curious-koala	11	11.0	3.8	132.0	13.25	1.45 TB	504.64 GB	ОК
big-cobra	amusing-bee	10	10.0	6.3	80.0	22.15	515.4 GB	79.63 GB	ОК
precious- lobster	grand-mutt	10	10.0	7.5	10.0	9.95	20.97 GB	20.97 GB	ок
sacred- marmoset	valued-firefly	10	5.0	3.7	100.0	10.33	26.84 GB	23.08 GB	ОК

Job analysis using metrics

Details on job redacted.sh (33627635) (ready-panther)

Running

Job analysis

Less than 1 core was used on average but 12 were asked for, this look like a serial job	Γ						
Less than half the CPU compute cycle were used	Use metrics to						
Less than 10% of the asked memory was used, please adjust the amount of memory requested	generate warnings						
This job is running on average 1.0 threads on 12 cores, the cores might be underused							
Application /lustre07/scratch/ready-panther/env/bin/python3.8 used 1.0 cores on average							
Show submitted job script							

	1 # CPU cores/threads # memory per node	SBATCHaccount=select-krill SBATCHgres=gpu:al00_4g.20gb SBATCHpus=per-task=12 SBATCHmem=60000M SBATCHtime=0-48:05 Dodule load cuda wthon trainer.py test 14 #r
--	---	---

Job analysis using submitted script

Regex templates to trigger messages

```
#SBATCH --ntasks=96  # number of MPI processes
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 gromacs/2020.4
gmx grompp -f $mdp/emin_$LAMBDA.mdp
gmx mdrun -v -deffnm emin$LAMBDA -nt 2
sleep 10
```

This job is using multiple nodes

Line 27: GROMACS preprocessor should be used on a login node

Line 29: GROMACS is used without srun or mpirun/mpiexec

Line 29: GROMACS is used with -nt 2 instead of -nt 96

Line 29: Multiple nodes are used without the MPI binary

Line 31: sleep command is used

Software used on the cluster

- Gather all process in the cgroup
 - Regex to extract software used

slurm-exporter

- Account priorities (levelFS)
 - See impacts of previous jobs on priority
- Resources requested and used
- Node states

Lustre stats

- Aggregation per
 - Cluster (public view) —
 - User
 - Group

Power measurement

- Entire node with iDRAC
 - Include fans, networking cards and other components
 - Power spread among jobs on the same node
- By GPUs
 - Power assigned to the corresponding job

Energy and cost

- Configurable with local price and CO2 per kWh
- Power used (Hydro electricity)
 - CO2
 - Electricity cost
- Time used
 - Hardware Amortization
 - Cloud cost equivalent
- Total cost per job

Energy	17.30 kWh
Electric car range equivalent	114.59 km
CO2 emissions	8.65 g
Internal cost	Electricity: 0.72 \$ Cooling: 0.18 \$ Hardware: 10.74 \$ Total: 11.64 \$

Intel PCM

- Low level CPU metrics
- Bandwidth bottleneck

Memory bandwidth

L3 cache hit rate

CPU interconnect bandwidth

Conclusion and future developpement

- Automatic email when resources are wasted
 - Analysts are periodically checking the "top" pages and help/warn users as required
- MIG automatic recommandation
 - We have about 20% of the GPUs currently splitted in half
- Using stats to change priorities of users/groups