
TrailblazingTurtle:
A Comprehensive Web Portal for

Maximizing HPC Resource Utilization

Simon Guilbault (simon.guilbault@calculquebec.ca)

2

Introduction
● HPC users struggle to fully use resources

○ Waste resources
○ Do not get the speedup they could have

● Solution
○ TrailblazingTurtle: A web portal to

aggregate and present relevant
information to users and staff

● Features
○ Job level monitoring

■ CPU, memory, GPUs, …
■ Lustre IO

○ Top users stats
○ Job table (squeue alternative)
○ Account stats
○ Long stats retention
○ Public view: portail.narval.calculquebec.ca

https://github.com/guilbaults/TrailblazingTurtle/
https://portail.narval.calculquebec.ca/

3

Overall design
● Django web portal

○ Can filter the view for each user
and allow staff to see everything

● Direct access to MySQL Slurmdb

● Metrics in Prometheus
○ Thanos for retention in S3
○ Slurm-job-exporter

■ Other exporters are optional

● Collect job scripts with a REST API
○ 23.02 added this feature natively

4

Jobs table
● Direct access

to database

● Full text search

● Filter by state
○ Pending
○ Running
○ Completed
○ OOM
○ Failed
○ Timeout
○ …

● Order by

5

Node states, events and jobs gantt-chart

NHC

6

Data sources
● Mysql slurmdb

○ Read only access

● Prometheus
○ node_exporter
○ slurm-job-exporter

■ Job level stats
● slurm-exporter

○ Account priorities, node down
● lustre_exporter + lustre_exporter_slurm

○ Collect stats by job, and add username/group based on slurmdb
● redfish_exporter

○ Power by node (Dell iDRAC)
● pcm-sensor-server

○ Intel only: L3 cache, IPC, NUMA and Memory bandwidth

https://github.com/prometheus/node_exporter
https://github.com/guilbaults/slurm-job-exporter
https://github.com/guilbaults/prometheus-slurm-exporter/tree/osc
https://github.com/HewlettPackard/lustre_exporter
https://github.com/guilbaults/lustre_exporter_slurm
https://github.com/jenningsloy318/redfish_exporter
https://github.com/intel/pcm/

7

Prometheus
● 1500 compute nodes (2000 nodes in total)

○ 250k metrics per second
○ 2 bytes per sample
○ 0.5MB/s -> 43 GB per day

● Aggregation using recorder rules
○ Sum per user, …

● Production VM (1 per cluster)
○ ~6 cores
○ 70GB of ram
○ 350GB of disk, ~25 IOPS, 2 MB/s
○ 200Mb/s of network traffic
○ Local retention of a few days

● Archival and aggregation of multiple
clusters

● Compact up to 14 days chunks
● S3 storage (Ceph)

○ 30 TB
● Removing some stats after 7 months

○ Rewriting blocks
○ 40 GB -> 10 GB

Thanos

8

slurm-job-exporter
● Gather metrics within each cgroup created by Slurm to contain each job

○ /sys/fs/cgroup/memory/slurm/uid_1000/job_42/
○ SLURM_JOB_ACCOUNT to get the account
○ CPU

■ Nanoseconds counter per core
○ Memory

■ Can measure the absolute peak, regardless of sampling frequency
○ Nvidia GPUs

■ DCGM and NVML
○ Process/threads count and paths within each job

HELP slurm_job_memory_usage Memory used by a job
TYPE slurm_job_memory_usage gauge
slurm_job_memory_usage{account="group1",slurmjobid="1",user="user1"} 1.634453504e+010
slurm_job_memory_usage{account="group2",slurmjobid="2",user="user2"} 8.271761408e+09
HELP slurm_job_core_usage_total Cpu usage of cores allocated to a job
TYPE slurm_job_core_usage_total counter
slurm_job_core_usage_total{account="group1",core="1",slurmjobid="1",user="user1"} 1.165134620225e+012
slurm_job_core_usage_total{account="group1",core="2",slurmjobid="1",user="user1"} 1.209891619592e+012
slurm_job_core_usage_total{account="group2",core="3",slurmjobid="2",user="user2"} 5.711518455e+012

9

CPU/Memory stats

10

NVIDIA GPUs stats
● Using DCGM (NVML fallback)

○ SM active, SM occupied
○ FP64, FP32, FP16, Tensor
○ Memory used and bandwidth
○ Nvlink/PCIe bandwidth
○ Power

● “nvidia-smi -L” in each cgroup to map
each GPU to a job

11

NVIDIA MIG support
● DCGM is required
● Detect and assign stats from MIG to jobs
● Using stats to evaluate how to split them in production

○ 20% of nodes are splitted with MIGs

A100 40GB -> 3g.20gb

12

Top users

Some are not
even using the
requested GPU

13

Job analysis using metrics

Use metrics to
generate warnings

14

Job analysis using submitted script
● Regex templates to trigger messages

#SBATCH --ntasks=96 # number of MPI processes
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 gromacs/2020.4
gmx grompp -f $mdp/emin_$LAMBDA.mdp
gmx mdrun -v -deffnm emin$LAMBDA -nt 2
sleep 10

Simplified script

15

Software used on the cluster
● Gather all process in the cgroup

○ Regex to extract software used

16

slurm-exporter
● Account priorities (levelFS)

○ See impacts of previous jobs on priority
● Resources requested and used
● Node states

17

Lustre stats
● Aggregation per

○ Cluster (public view)
○ User
○ Group
○ Job

18

Power measurement
● Entire node with iDRAC

○ Include fans, networking cards and other components
○ Power spread among jobs on the same node

● By GPUs
○ Power assigned to the corresponding job

19

Energy and cost
● Configurable with local price and CO2 per kWh

● Power used (Hydro electricity)
○ CO2
○ Electricity cost

● Time used
○ Hardware Amortization
○ Cloud cost equivalent

● Total cost per job

20

Intel PCM
● Low level CPU metrics
● Bandwidth bottleneck

21

Conclusion and future developpement
● Automatic email when resources are wasted

○ Analysts are periodically checking the “top” pages and help/warn users
as required

● MIG automatic recommandation
○ We have about 20% of the GPUs currently splitted in half

● Using stats to change priorities of users/groups

