
SchedMD LLC
http://www.schedmd.com

Slurm Fault Tolerant Workload
Management

19 October 2013
David Bigagli, Morris Jette

[david,jette]@schedmd.com

SchedMD LLC
http://www.schedmd.com

Motivation

● Failures in large computers are inevitable.
● Bigger the size of the parallel job higher is the

probability of failure at runtime.
● Implement failure recovery services in Slurm

which can be used by running applications to
respond to observed or anticipated failures.

SchedMD LLC
http://www.schedmd.com

Current approach

● Workload manager based:

– Using re-runnable jobs

– Using job dependencies

– Allocating extra resources
● Application based:

– System-level checkpointing

– Application-level checkpointing
● If failures are common, the impact on application

performance is significant

SchedMD LLC
http://www.schedmd.com

Helping applications be resilient
(Dr. William Kramer, NCSA, SUG 2011)

● Applications are able to reallocate work

● The resource manager provides assistance to
substitute resource with just in time delivery

● A protocol between resource manager and application
to negotiate the best solution:

– System: “Your node x just broke”

– App: “Can I have another node to replace it”

– System: “Yes, but not for 50 minutes”

– App: “Ok then just drop it and extend my runtime”

SchedMD LLC
http://www.schedmd.com

Helping applications be resilient
(Dr. William Kramer, NCSA, SUG 2011)

● Another example:

– App: “My node Y is not responding”

– System: “I can give you another one in 5 minutes”

– App: “Can you make it 2 nodes so I can make up the lost
time”

– System: “Yes, but not for 7 minutes”

– App: “Also adjust my time limit by 20 minutes”

– System: “I have something else waiting, but can give you 10
minutes”

– App: “Ok”

SchedMD LLC
http://www.schedmd.com

Slurm failure management
infrastructure

● Failed hosts, currently out of service

● Failing hosts, malfunctioning and/or expected to fail

● Hot Spare

– A cluster-wide pool of resources to be made available to
jobs with failed/failing nodes

– The hot spare pool is partition based, the administrator
specifies how many spares in a given partition

– Any node in the partition can be part of the spare pool

– Access control list to the hot spare indicating which
user/group may or may not use it

SchedMD LLC
http://www.schedmd.com

Slurm failure management
infrastructure

● Failing hosts can be drained and then dropped from
the allocation, giving application flexibility to manage
its own resources.

● Drained nodes can be put back on-line by the
administrator and they will go automatically back to the
spare pool.

● Failed nodes can be put back on-line and they will go
automatically back to the spare pool.

SchedMD LLC
http://www.schedmd.com

Slurm failure management
infrastructure

● Application usually detects the failure by itself, losing one or more of its
component

– Able to notify Slurm of failures and drain nodes
● Application can also query Slurm about state of nodes in its allocation

● Application asks Slurm to replace its failed/failing nodes, then it can

– Wait for nodes become available, eventually increasing its runtime till
then

– Increase its runtime upon node replacement

– Drop the nodes and continue, eventually increasing its runtime

SchedMD LLC
http://www.schedmd.com

Slurm architecture

● Slurmctld plugin keeps track of the spare pool and the
job allocation status

● libsmd.so, libsmd.a and smd.h are the client interface
and library to the non stop services based on a jobID

● snonstop command build on top of the library
provides command line interface to the recovery
services.

● nonstop.sh shell script which automates the node
replacement based on user supplied environment
variables.

SchedMD LLC
http://www.schedmd.com

SnonStop usage

● The application runs unchanged and at every step it
checks the health of its nodes.

● The application may link with the libsmd.so library and
use the nonstop API to retrieve the node status and take
action to replace them.

● The application may link with the libsmd.so library and
subscribes for events which will be delivered
asynchronously.

● The job has to be submitted to Slurm using the --no-kill
option to prevent it being killed upon component failure.

SchedMD LLC
http://www.schedmd.com

SnonStop common use case

#!/bin/sh

Set the environment variable to handle
runtime node failure.
export
SMD_NONSTOP_FAILED=REPLACE:TIME_LIMIT_DELAY=10:EXIT_JOB

i=0
while [$i -le 100]
do
Run the $i step of my application
 srun myapp
Detect failure and execute actions
 nonstop.sh
 if [$? -ne 0]; then
 exit 1
 fi
 let i=i+1
done

SchedMD LLC
http://www.schedmd.com

SnonStop configuration

● Environment variables to determine the nonstop action
to recover nodes

● SMD_NONSTOP_FAILED or
SMD_NONSTOP_FAILING =

– REPLACE:DROP:EXIT_JOB

– TIME_LIMIT_DELAY

– TIME_LIMIT_EXTEND

– TIME_LIMIT_DROP

SchedMD LLC
http://www.schedmd.com

nonstop.conf

#
ControlAddr=prometeo
#
Debug=0
Port=34000
UserDrainAllow=david
#UserDrainDeny=david
#
Extend time upon node replacement
TimeLimitExtend=15
Extend time upon node drop
TimeLimitDrop=22
Extend time while attempting to replace node
TimeLimitDelay=12
#
HotSpareCount=bootes:2
#
MaxSpareNodeCount=2

SchedMD LLC
http://www.schedmd.com

Example of use

● Termination of a component of the parallel job causing
the step to abort

● If there are enough nodes the replacement is
automatic

srun: error: achab5: tasks 16-23: Killed
is_failed: job 130 searching for FAILED hosts
is_failed: job 130 has 1 FAILED node(s)
is_failed: job 130 FAILED node achab6 cpu_count 8
_handle_fault: job 130 handle failed_hosts
_try_replace: job 130 trying to replace 1 node(s)
_try_replace: job 130 node achab6 replaced by achab7
_generate_node_file: job 130 all nodes replaced
source the /tmp/smd_job_130_nodes.sh hostfile to get the new job environment
_try_replace: job 130 all nodes replaced all right

SchedMD LLC
http://www.schedmd.com

Discussion

● Question and answers.

● Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

